Probing the filamentary nature of star formation in the California giant molecular cloud

被引:2
|
作者
Zhang, Guo-Yin [1 ,2 ]
Andre, Philippe [2 ]
Men'shchikov, Alexander [2 ]
Li, Jin-Zeng [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Paris Cite, Univ Paris Saclay, CEA, AIM,CNRS, F-91191 Gif Sur Yvette, France
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
stars: formation; ISM: clouds; dust; extinction; ISM: structure; INITIAL MASS FUNCTION; INTERSTELLAR FILAMENTS; PRESTELLAR CORES; DENSE CORES; ACCURATE DISTANCES; LARGE CATALOG; HERSCHEL; LUMINOSITY; MORPHOLOGY; PROTOSTARS;
D O I
10.1051/0004-6361/202449853
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Recent studies suggest that filamentary structures are representative of the initial conditions of star formation in molecular clouds and support a filament paradigm for star formation, potentially accounting for the origin of the stellar initial mass function (IMF). The detailed, local physical properties of molecular filaments remain poorly characterized, however. Aims. Using Herschel imaging observations of the California giant molecular cloud, we aim to further investigate the filament paradigm for low- to intermediate-mass star formation and to better understand the exact role of filaments in the origin of stellar masses. Methods. Using the multiscale, multiwavelength extraction method getsf, we identify starless cores, protostars, and filaments in the Herschel data set and separate these components from the background cloud contribution to determine accurate core and filament properties. Results. We find that filamentary structures contribute approximately 20% of the overall mass of the California cloud, while compact sources such as dense cores contribute a mere 2% of the total mass. Considering only dense gas (defined as gas with A(V,bg) > 4.5-7), filaments and cores contribute similar to 66-73% and 10-14% of the dense gas mass, respectively. The transverse half-power diameter measured for California molecular filaments has a median undeconvolved value of 0.18 pc, consistent within a factor of 2 with the typical similar to 0.1 pc width of nearby filaments from the Herschel Gould Belt survey. A vast majority of identified prestellar cores (similar to 82-90%) are located within similar to 0.1 pc of the spines of supercritical filamentary structures. Both the prestellar core mass function (CMF) and the distribution of filament masses per unit length or filament line mass function (FLMF) are consistent with power-law distributions at the high-mass end, Delta N/Delta logM proportional to M-1.4 +/- 0.2 at M > 1 M-circle dot for the CMF and Delta N/Delta log M-line proportional to M-line(-1.5 +/- 0.2) for the FLMF at M-line > 10 M-circle dot pc(-1), which are both consistent with the Salpeter power-law IMF. Based on these results, we propose a revised model for the origin of the CMF in filaments, whereby the global prestellar CMF in a molecular cloud arises from the integration of the CMFs generated by individual thermally supercritical filaments within the cloud. Conclusions. Our findings support the existence a tight connection between the FLMF and the CMF/IMF and suggests that filamentary structures represent a critical evolutionary step in establishing a Salpeter-like mass function.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Shapes of molecular cloud cores and the filamentary mode of star formation
    Curry, CL
    ASTROPHYSICAL JOURNAL, 2002, 576 (02) : 849 - 859
  • [2] The Herschel view of the on-going star formation in the Vela-C molecular cloud
    Giannini, T.
    Elia, D.
    Lorenzetti, D.
    Molinari, S.
    Motte, F.
    Schisano, E.
    Pezzuto, S.
    Pestalozzi, M.
    Di Giorgio, A. M.
    Andre, P.
    Hill, T.
    Benedettini, M.
    Bontemps, S.
    Di Francesco, J.
    Fallscheer, C.
    Hennemann, M.
    Kirk, J.
    Minier, V.
    Luong, Q. Nguyen
    Polychroni, D.
    Rygl, K. L. J.
    Saraceno, P.
    Schneider, N.
    Spinoglio, L.
    Testi, L.
    Ward-Thompson, D.
    White, G. J.
    ASTRONOMY & ASTROPHYSICS, 2012, 539
  • [3] THE DENSE FILAMENTARY GIANT MOLECULAR CLOUD G23.0-0.4: BIRTHPLACE OF ONGOING MASSIVE STAR FORMATION
    Su, Yang
    Zhang, Shaobo
    Shao, Xiangjun
    Yang, Ji
    ASTROPHYSICAL JOURNAL, 2015, 811 (02)
  • [4] Probing the global dust properties and cluster formation potential of the giant molecular cloud G148.24+00.41
    Rawat, Vineet
    Samal, M. R.
    Walker, D. L.
    Zavagno, A.
    Tej, A.
    Marton, G.
    Ojha, D. K.
    Elia, Davide
    Chen, W. P.
    Jose, J.
    Eswaraiah, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 521 (02) : 2786 - 2805
  • [5] The Giant Molecular Cloud G148.24+00.41: gas properties, kinematics, and cluster formation at the nexus of filamentary flows
    Rawat, Vineet
    Samal, M. R.
    Walker, D. L.
    Ojha, D. K.
    Tej, A.
    Zavagno, A.
    Zhang, C. P.
    Elia, Davide
    Dutta, S.
    Jose, J.
    Eswaraiah, C.
    Sharma, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (02) : 2199 - 2219
  • [6] FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES
    Lee, Katherine
    Looney, Leslie
    Johnstone, Doug
    Tobin, John
    ASTROPHYSICAL JOURNAL, 2012, 761 (02)
  • [7] On the indeterministic nature of star formation on the cloud scale
    Geen, Sam
    Watson, Stuart K.
    Rosdahl, Joakim
    Bieri, Rebekka
    Klessen, Ralf S.
    Hennebelle, Patrick
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (02) : 2548 - 2569
  • [8] Evidence for a molecular cloud origin of gamma-ray bursts: Implications for the nature of star formation in the universe
    Reichart, DE
    Price, PA
    ASTROPHYSICAL JOURNAL, 2002, 565 (01) : 174 - 181
  • [9] Gravitational fragmentation caught in the act: the filamentary Musca molecular cloud
    Kainulainen, J.
    Hacar, A.
    Alves, J.
    Beuther, H.
    Bouy, H.
    Tafalla, M.
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [10] Fragmentation of star-forming filaments in the X-shaped nebula of the California molecular cloud
    Zhang, Guo-Yin
    Andre, Ph.
    Men'shchikov, A.
    Wang, Ke
    ASTRONOMY & ASTROPHYSICS, 2020, 642