Intraoperative detection of parathyroid glands using artificial intelligence: optimizing medical image training with data augmentation methods

被引:2
|
作者
Lee, Joon-Hyop [1 ]
Ku, EunKyung [2 ]
Chung, Yoo Seung [3 ]
Kim, Young Jae [4 ]
Kim, Kwang Gi [4 ]
机构
[1] Samsung Med Ctr, Dept Surg, Div Endocrine Surg, 81 Irwon Ro, Seoul, South Korea
[2] Catholic Univ Korea, Dept Digital Media, 43 Jibong Ro, Bucheon 14662, Gyeonggi Do, South Korea
[3] Gachon Univ, Gil Med Ctr, Dept Surg, Div Endocrine Surg,Coll Med, Incheon, South Korea
[4] Gachon Univ, Coll Med, Gil Med Ctr, Dept Biomed Engn, 38-13 Dokjeom Ro 3Beon Gil, Incheon 21565, South Korea
来源
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES | 2024年 / 38卷 / 10期
基金
新加坡国家研究基金会;
关键词
Parathyroid gland; Artificial intelligence; Object detection; Data augmentation; Generative adversarial network; QUALITY ASSESSMENT; THYROID-SURGERY; ASSOCIATION; STATEMENT;
D O I
10.1007/s00464-024-11115-z
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundPostoperative hypoparathyroidism is a major complication of thyroidectomy, occurring when the parathyroid glands are inadvertently damaged during surgery. Although intraoperative images are rarely used to train artificial intelligence (AI) because of its complex nature, AI may be trained to intraoperatively detect parathyroid glands using various augmentation methods. The purpose of this study was to train an effective AI model to detect parathyroid glands during thyroidectomy.MethodsVideo clips of the parathyroid gland were collected during thyroid lobectomy procedures. Confirmed parathyroid images were used to train three types of datasets according to augmentation status: baseline, geometric transformation, and generative adversarial network-based image inpainting. The primary outcome was the average precision of the performance of AI in detecting parathyroid glands.Results152 Fine-needle aspiration-confirmed parathyroid gland images were acquired from 150 patients who underwent unilateral lobectomy. The average precision of the AI model in detecting parathyroid glands based on baseline data was 77%. This performance was enhanced by applying both geometric transformation and image inpainting augmentation methods, with the geometric transformation data augmentation dataset showing a higher average precision (79%) than the image inpainting model (78.6%). When this model was subjected to external validation using a completely different thyroidectomy approach, the image inpainting method was more effective (46%) than both the geometric transformation (37%) and baseline (33%) methods.ConclusionThis AI model was found to be an effective and generalizable tool in the intraoperative identification of parathyroid glands during thyroidectomy, especially when aided by appropriate augmentation methods. Additional studies comparing model performance and surgeon identification, however, are needed to assess the true clinical relevance of this AI model.
引用
收藏
页码:5732 / 5745
页数:14
相关论文
共 50 条
  • [21] Medical Image Diagnosis of Liver Cancer Using a Neural Network and Artificial Intelligence
    Kondo, Tadashi
    Ueno, Junji
    Takao, Shoichiro
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (06) : 714 - 722
  • [22] Leaf Disease Detection Using Image Processing and Artificial Intelligence - A Survey
    Parikshith, H.
    Rajath, S. M. Naga
    Kumar, S. P. Pavan
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 304 - 311
  • [23] A Review of Payment Card Fraud Detection Methods Using Artificial Intelligence
    Sengupta, Eishvak
    Jain, Naman
    Garg, Dhruv
    Choudhury, Tanupriya
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 494 - 498
  • [24] Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification
    Hung, Shih-Kai
    Gan, John Q.
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3350 - 3356
  • [25] DeepCapture: Image Spam Detection Using Deep Learning and Data Augmentation
    Kim, Bedeuro
    Abuadbba, Sharif
    Kim, Hyoungshick
    INFORMATION SECURITY AND PRIVACY, ACISP 2020, 2020, 12248 : 461 - 475
  • [26] Uncertainty-aware self-training with adversarial data augmentation for semi-supervised medical image segmentation
    Cao, Juan
    Chen, Jiaran
    Liu, Jinjia
    Gu, Yuanyuan
    Chen, Lili
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [27] Chirality Detection in Scanning Tunneling Microscopy Data Using Artificial Intelligence
    Seifert, Tim J.
    Stritzke, Mandy
    Kasten, Peer
    Moeller, Bjoern
    Fingscheidt, Tim
    Etzkorn, Markus
    de Wolff, Timo
    Schlickum, Uta
    SMALL METHODS, 2024,
  • [28] Improving imbalanced medical image classification through GAN-based data augmentation methods
    Ding, Hongwei
    Huang, Nana
    Wu, Yaoxin
    Cui, Xiaohui
    PATTERN RECOGNITION, 2025, 166
  • [29] Artificial Intelligence for Detection of Dementia Using Motions Data: A Scoping Review
    Puterman-Salzman, Lily
    Katz, Jory
    Bergman, Howard
    Grad, Roland
    Khanassov, Vladimir
    Gore, Genevieve
    Vedel, Isabelle
    Wilchesky, Machelle
    Armanfard, Narges
    Ghourchian, Negar
    Rahimi, Samira Abbasgholizadeh
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS EXTRA, 2023, 13 (01) : 28 - 38
  • [30] Weed Detection in Wheat Crops Using Image Analysis and Artificial Intelligence (AI)
    Ul Haq, Syed Ijaz
    Tahir, Muhammad Naveed
    Lan, Yubin
    APPLIED SCIENCES-BASEL, 2023, 13 (15):