The crucial role of diagnostics in achieving ignition on the National Ignition Facility (NIF)

被引:1
作者
Kilkenny, J. D. [1 ]
Pak, A. [2 ]
Landen, O. L. [2 ]
Moore, A. S. [2 ]
Meezan, N. B. [2 ]
Haan, S. W. [2 ]
Hsing, W. W. [2 ]
Batha, S. H. [3 ]
Bradley, D. K. [2 ]
Gatu-Johnson, M. [4 ]
Mackinnon, A. J. [2 ]
Regan, S. P. [5 ]
Smalyuk, V. A. [1 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
关键词
HOT-SPOT MIX; HIGH-VELOCITY; IMPLOSIONS; DENSITY; TARGETS; ASYMMETRIES; DETECTORS; CAMPAIGN;
D O I
10.1063/5.0211684
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Well over 100 diagnostics can operate on the National Ignition Facility (NIF) as a result of several decades of development on NIF, and before that on Nova, OMEGA, and earlier LLNL lasers. A subset of these have guided the approach to achieving ignition on the NIF in 2022 [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129(7), 075001 (2022)]. Achieving ignition on NIF has required many types of experiments with this core set of diagnostics, some constraining known unknowns and some revealing surprises-arguably unknown unknowns. Early design work realized that the extreme precision required for ignition on NIF would require fine-tuning by experiment, that is, measuring and adjusting known unknowns. Many examples are given where the use of the core set of ignition diagnostics in experimental arrangements called platforms demonstrated control of the key theoretical parameters defined as shape, adiabat, velocity, and mix. The direction of the adjustments to input conditions is found either by trend analysis or, in many cases, by observing from the diagnostic data the direction to make an adjustment. In addition, diagnostics have revealed some unexpected or neglected known issues, which degrade performance, or unexpected issues, unknown unknowns. Some of these factors had been previously considered, but underestimated or difficult to calculate at the time. The overall methodology can be described as a variant of Popper's falsifiability philosophy [K. Popper, The Logic of Scientific Discovery (Hutchinson, 1974)]. This paper summarizes the role of ignition diagnostics in terms of falsification or validation of theory or experimental setup as well as uncovering unexpected issues. The journey to ignition started in the seventies with a 1-mu m wavelength laser producing disastrous results. Diagnostics have guided us to the recent multi-decadal goal of demonstrating ignition and burn in the laboratory.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] High-mode Rayleigh-Taylor growth in NIF ignition capsules
    Hammel, B. A.
    Haan, S. W.
    Clark, D. S.
    Edwards, M. J.
    Langer, S. H.
    Marinak, M. M.
    Patel, M. V.
    Salmonson, J. D.
    Scott, H. A.
    HIGH ENERGY DENSITY PHYSICS, 2010, 6 (02) : 171 - 178
  • [42] High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
    Baker, K. L.
    Thomas, C. A.
    Casey, D. T.
    Khan, S.
    Spears, B. K.
    Nora, R.
    Woods, T.
    Milovich, J. L.
    Berger, R. L.
    Strozzi, D.
    Clark, D.
    Hohenberger, M.
    Hurricane, O. A.
    Callahan, D. A.
    Landen, O. L.
    Bachmann, B.
    Benedetti, R.
    Bionta, R.
    Celliers, P. M.
    Fittinghoff, D.
    Goyon, C.
    Grim, G.
    Hatarik, R.
    Izumi, N.
    Johnson, M. Gatu
    Kyrala, G.
    Ma, T.
    Millot, M.
    Nagel, S. R.
    Pak, A.
    Patel, P. K.
    Turnbull, D.
    Volegov, P. L.
    Yeamans, C.
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [43] Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
    Clark, D. S.
    Weber, C. R.
    Milovich, J. L.
    Salmonson, J. D.
    Kritcher, A. L.
    Haan, S. W.
    Hammel, B. A.
    Hinkel, D. E.
    Hurricane, O. A.
    Jones, O. S.
    Marinak, M. M.
    Patel, P. K.
    Robey, H. F.
    Sepke, S. M.
    Edwards, M. J.
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [44] Capsule performance optimization in the National Ignition Campaign
    Landen, O. L.
    Boehly, T. R.
    Bradley, D. K.
    Braun, D. G.
    Callahan, D. A.
    Celliers, P. M.
    Collins, G. W.
    Dewald, E. L.
    Divol, L.
    Glenzer, S. H.
    Hamza, A.
    Hicks, D. G.
    Hoffman, N.
    Izumi, N.
    Jones, O. S.
    Kirkwood, R. K.
    Kyrala, G. A.
    Michel, P.
    Milovich, J.
    Munro, D. H.
    Nikroo, A.
    Olson, R. E.
    Robey, H. F.
    Spears, B. K.
    Thomas, C. A.
    Weber, S. V.
    Wilson, D. C.
    Marinak, M. M.
    Suter, L. J.
    Hammel, B. A.
    Meyerhofer, D. D.
    Atherton, J.
    Edwards, J.
    Haan, S. W.
    Lindl, J. D.
    MacGowan, B. J.
    Moses, E. I.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [45] Capsule Performance Optimization in the National Ignition Campaign
    Landen, O. L.
    MacGowan, B. J.
    Haan, S. W.
    Edwards, J.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [46] Studies on targets for inertial fusion ignition demonstration at the HiPER facility
    Atzeni, S.
    Davies, J. R.
    Hallo, L.
    Honrubia, J. J.
    Maire, P. H.
    Olazabal-Loume, M.
    Feugeas, J. L.
    Ribeyre, X.
    Schiavi, A.
    Schurtz, G.
    Breil, J.
    Nicolai, Ph.
    NUCLEAR FUSION, 2009, 49 (05)
  • [47] Bright x-ray stainless steel K-shell source development at the National Ignition Facility
    May, M. J.
    Fournier, K. B.
    Colvin, J. D.
    Barrios, M. A.
    Dewald, E. L.
    Hohenberger, M.
    Moody, J.
    Patterson, J. R.
    Schneider, M.
    Widmann, K.
    Regan, S. P.
    PHYSICS OF PLASMAS, 2015, 22 (06)
  • [48] The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion
    Edwards, M. J.
    Lindl, J. D.
    Spears, B. K.
    Weber, S. V.
    Atherton, L. J.
    Bleuel, D. L.
    Bradley, D. K.
    Callahan, D. A.
    Cerjan, C. J.
    Clark, D.
    Collins, G. W.
    Fair, J. E.
    Fortner, R. J.
    Glenzer, S. H.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A. V.
    Hatchett, S. P.
    Izumi, N.
    Jacoby, B.
    Jones, O. S.
    Koch, J. A.
    Kozioziemski, B. J.
    Landen, O. L.
    Lerche, R.
    MacGowan, B. J.
    MacKinnon, A. J.
    Mapoles, E. R.
    Marinak, M. M.
    Moran, M.
    Moses, E. I.
    Munro, D. H.
    Schneider, D. H.
    Sepke, S. M.
    Shaughnessy, D. A.
    Springer, P. T.
    Tommasini, R.
    Bernstein, L.
    Stoeffl, W.
    Betti, R.
    Boehly, T. R.
    Sangster, T. C.
    Glebov, V. Yu.
    McKenty, P. W.
    Regan, S. P.
    Edgell, D. H.
    Knauer, J. P.
    Stoeckl, C.
    Harding, D. R.
    Batha, S.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [49] Investigation of high X-ray conversion efficiency Kr filled gas sources at the National Ignition Facility
    May, M. J.
    Kemp, G. E.
    Colvin, J. D.
    Liedahl, D. A.
    Poole, P. L.
    Thorn, D. B.
    Widmann, K.
    Benjamin, R.
    Barrios, M. A.
    Blue, B. E.
    PHYSICS OF PLASMAS, 2019, 26 (06)
  • [50] Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility
    Cardenas, Tana
    Schmidt, Derek W.
    Loomis, Eric N.
    Randolph, Randall B.
    Hamilton, Christopher E.
    Oertel, John
    Patterson, Brian M.
    Henderson, Kevin
    Wilson, Doug C.
    Merritt, Elizabeth
    Montgomery, David
    Daughton, William
    Dodd, Evan
    Palaniyappan, Sasikumar
    Kline, John
    Batha, Steve
    Huang, Haibo
    Hoppe, Marty L.
    Schoff, Michael
    Rice, Neal
    Nikroo, Abbas
    Wang, Morris
    Seugling, Richard
    Bennett, Donald
    Johnson, Steve
    Castro, Carlos
    FUSION SCIENCE AND TECHNOLOGY, 2018, 73 (03) : 344 - 353