The crucial role of diagnostics in achieving ignition on the National Ignition Facility (NIF)

被引:1
作者
Kilkenny, J. D. [1 ]
Pak, A. [2 ]
Landen, O. L. [2 ]
Moore, A. S. [2 ]
Meezan, N. B. [2 ]
Haan, S. W. [2 ]
Hsing, W. W. [2 ]
Batha, S. H. [3 ]
Bradley, D. K. [2 ]
Gatu-Johnson, M. [4 ]
Mackinnon, A. J. [2 ]
Regan, S. P. [5 ]
Smalyuk, V. A. [1 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
关键词
HOT-SPOT MIX; HIGH-VELOCITY; IMPLOSIONS; DENSITY; TARGETS; ASYMMETRIES; DETECTORS; CAMPAIGN;
D O I
10.1063/5.0211684
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Well over 100 diagnostics can operate on the National Ignition Facility (NIF) as a result of several decades of development on NIF, and before that on Nova, OMEGA, and earlier LLNL lasers. A subset of these have guided the approach to achieving ignition on the NIF in 2022 [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129(7), 075001 (2022)]. Achieving ignition on NIF has required many types of experiments with this core set of diagnostics, some constraining known unknowns and some revealing surprises-arguably unknown unknowns. Early design work realized that the extreme precision required for ignition on NIF would require fine-tuning by experiment, that is, measuring and adjusting known unknowns. Many examples are given where the use of the core set of ignition diagnostics in experimental arrangements called platforms demonstrated control of the key theoretical parameters defined as shape, adiabat, velocity, and mix. The direction of the adjustments to input conditions is found either by trend analysis or, in many cases, by observing from the diagnostic data the direction to make an adjustment. In addition, diagnostics have revealed some unexpected or neglected known issues, which degrade performance, or unexpected issues, unknown unknowns. Some of these factors had been previously considered, but underestimated or difficult to calculate at the time. The overall methodology can be described as a variant of Popper's falsifiability philosophy [K. Popper, The Logic of Scientific Discovery (Hutchinson, 1974)]. This paper summarizes the role of ignition diagnostics in terms of falsification or validation of theory or experimental setup as well as uncovering unexpected issues. The journey to ignition started in the seventies with a 1-mu m wavelength laser producing disastrous results. Diagnostics have guided us to the recent multi-decadal goal of demonstrating ignition and burn in the laboratory.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
    Clark, D. S.
    Hinkel, D. E.
    Eder, D. C.
    Jones, O. S.
    Haan, S. W.
    Hammel, B. A.
    Marinak, M. M.
    Milovich, J. L.
    Robey, H. F.
    Suter, L. J.
    Town, R. P. J.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [32] Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
    Hayes, A. C.
    Bradley, P. A.
    Grim, G. P.
    Jungman, Gerard
    Wilhelmy, J. B.
    PHYSICS OF PLASMAS, 2010, 17 (01)
  • [33] Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum
    Amendt, Peter
    Ho, Darwin
    Ping, Yuan
    Smalyuk, Vladimir
    Khan, Shahab
    Lindl, John
    Strozzi, David
    Tommasini, Riccardo
    Belyaev, Mikhail
    Cerjan, Charles
    Jones, Oggie
    Kruer, William
    Meezan, Nathan
    Robey, Harry
    Tsung, Frank
    Weber, Chris
    Young, Chris
    PHYSICS OF PLASMAS, 2019, 26 (08)
  • [34] 2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
    Rygg, J. R.
    Jones, O. S.
    Field, J. E.
    Barrios, M. A.
    Benedetti, L. R.
    Collins, G. W.
    Eder, D. C.
    Edwards, M. J.
    Kline, J. L.
    Kroll, J. J.
    Landen, O. L.
    Ma, T.
    Pak, A.
    Peterson, J. L.
    Raman, K.
    Town, R. P. J.
    Bradley, D. K.
    PHYSICAL REVIEW LETTERS, 2014, 112 (19)
  • [35] Modeling ablator defects as a source of mix in high-performance implosions at the National Ignition Facility
    Clark, D. S.
    Allen, A.
    Baxamusa, S. H.
    Biener, J.
    Biener, M. M.
    Braun, T.
    Davidovits, S.
    Divol, L.
    Farmer, W. A.
    Fehrenbach, T.
    Kong, C.
    Millot, M.
    Milovich, J.
    Nikroo, A.
    Nora, R. C.
    Pak, A. E.
    Rubery, M. S.
    Stadermann, M.
    Sterne, P.
    Weber, C. R.
    Wild, C.
    PHYSICS OF PLASMAS, 2024, 31 (06)
  • [36] A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility
    Moore, A. S.
    Guymer, T. M.
    Kline, J. L.
    Morton, J.
    Taccetti, M.
    Lanier, N. E.
    Bentley, C.
    Workman, J.
    Peterson, B.
    Mussack, K.
    Cowan, J.
    Prasad, R.
    Richardson, M.
    Burns, S.
    Kalantar, D. H.
    Benedetti, L. R.
    Bell, P.
    Bradley, D.
    Hsing, W.
    Stevenson, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
  • [37] Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping
    Robey, H. F.
    Smalyuk, V. A.
    Milovich, J. L.
    Doppner, T.
    Casey, D. T.
    Baker, K. L.
    Peterson, J. L.
    Bachmann, B.
    Hopkins, L. F. Berzak
    Bond, E.
    Caggiano, J. A.
    Callahan, D. A.
    Celliers, P. M.
    Cerjan, C.
    Clark, D. S.
    Dixit, S. N.
    Edwards, M. J.
    Gharibyan, N.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A. V.
    Hatarik, R.
    Hurricane, O. A.
    Jancaitis, K. S.
    Jones, O. S.
    Kerbel, G. D.
    Kroll, J. J.
    Lafortune, K. N.
    Landen, O. L.
    Ma, T.
    Marinak, M. M.
    MacGowan, B. J.
    MacPhee, A. G.
    Pak, A.
    Patel, M.
    Patel, P. K.
    Perkins, L. J.
    Sayre, D. B.
    Sepke, S. M.
    Spears, B. K.
    Tommasini, R.
    Weber, C. R.
    Widmayer, C. C.
    Yeamans, C.
    Giraldez, E.
    Hoover, D.
    Nikroo, A.
    Hohenberger, M.
    Johnson, M. Gatu
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [38] A diamond detector for X-ray bang-time measurement at the National Ignition Facility
    MacPhee, A. G.
    Edgell, D. H.
    Bond, E. J.
    Bradley, D. K.
    Brown, C. G.
    Burns, S. R.
    Celeste, J. R.
    Cerjan, C. J.
    Eckart, M. J.
    Glebov, V. Y.
    Glenzer, S. H.
    Hey, D. S.
    Jones, O. S.
    Kilkenny, J. D.
    Kimbrough, J. R.
    Landen, O. L.
    Mackinnon, A. J.
    Meezan, N. B.
    Parker, J. M.
    Sweeney, R. M.
    JOURNAL OF INSTRUMENTATION, 2011, 6
  • [39] The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
    Glebov, V. Yu.
    Sangster, T. C.
    Stoeckl, C.
    Knauer, J. P.
    Theobald, W.
    Marshall, K. L.
    Shoup, M. J., III
    Buczek, T.
    Cruz, M.
    Duffy, T.
    Romanofsky, M.
    Fox, M.
    Pruyne, A.
    Moran, M. J.
    Lerche, R. A.
    McNaney, J.
    Kilkenny, J. D.
    Eckart, M. J.
    Schneider, D.
    Munro, D.
    Stoeffl, W.
    Zacharias, R.
    Haslam, J. J.
    Clancy, T.
    Yeoman, M.
    Warwas, D.
    Horsfield, C. J.
    Bourgade, J. -L.
    Landoas, O.
    Disdier, L.
    Chandler, G. A.
    Leeper, R. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)
  • [40] National Ignition Campaign Hohlraum energetics
    Meezan, N. B.
    Atherton, L. J.
    Callahan, D. A.
    Dewald, E. L.
    Dixit, S.
    Dzenitis, E. G.
    Edwards, M. J.
    Haynam, C. A.
    Hinkel, D. E.
    Jones, O. S.
    Landen, O.
    London, R. A.
    Michel, P. A.
    Moody, J. D.
    Milovich, J. L.
    Schneider, M. B.
    Thomas, C. A.
    Town, R. P. J.
    Warrick, A. L.
    Weber, S. V.
    Widmann, K.
    Glenzer, S. H.
    Suter, L. J.
    MacGowan, B. J.
    Kline, J. L.
    Kyrala, G. A.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2010, 17 (05)