The crucial role of diagnostics in achieving ignition on the National Ignition Facility (NIF)

被引:1
作者
Kilkenny, J. D. [1 ]
Pak, A. [2 ]
Landen, O. L. [2 ]
Moore, A. S. [2 ]
Meezan, N. B. [2 ]
Haan, S. W. [2 ]
Hsing, W. W. [2 ]
Batha, S. H. [3 ]
Bradley, D. K. [2 ]
Gatu-Johnson, M. [4 ]
Mackinnon, A. J. [2 ]
Regan, S. P. [5 ]
Smalyuk, V. A. [1 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
关键词
HOT-SPOT MIX; HIGH-VELOCITY; IMPLOSIONS; DENSITY; TARGETS; ASYMMETRIES; DETECTORS; CAMPAIGN;
D O I
10.1063/5.0211684
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Well over 100 diagnostics can operate on the National Ignition Facility (NIF) as a result of several decades of development on NIF, and before that on Nova, OMEGA, and earlier LLNL lasers. A subset of these have guided the approach to achieving ignition on the NIF in 2022 [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129(7), 075001 (2022)]. Achieving ignition on NIF has required many types of experiments with this core set of diagnostics, some constraining known unknowns and some revealing surprises-arguably unknown unknowns. Early design work realized that the extreme precision required for ignition on NIF would require fine-tuning by experiment, that is, measuring and adjusting known unknowns. Many examples are given where the use of the core set of ignition diagnostics in experimental arrangements called platforms demonstrated control of the key theoretical parameters defined as shape, adiabat, velocity, and mix. The direction of the adjustments to input conditions is found either by trend analysis or, in many cases, by observing from the diagnostic data the direction to make an adjustment. In addition, diagnostics have revealed some unexpected or neglected known issues, which degrade performance, or unexpected issues, unknown unknowns. Some of these factors had been previously considered, but underestimated or difficult to calculate at the time. The overall methodology can be described as a variant of Popper's falsifiability philosophy [K. Popper, The Logic of Scientific Discovery (Hutchinson, 1974)]. This paper summarizes the role of ignition diagnostics in terms of falsification or validation of theory or experimental setup as well as uncovering unexpected issues. The journey to ignition started in the seventies with a 1-mu m wavelength laser producing disastrous results. Diagnostics have guided us to the recent multi-decadal goal of demonstrating ignition and burn in the laboratory.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Indirect drive ignition at the National Ignition Facility
    Meezan, N. B.
    Edwards, M. J.
    Hurricane, O. A.
    Patel, P. K.
    Callahan, D. A.
    Hsing, W. W.
    Town, R. P. J.
    Albert, F.
    Amendt, P. A.
    Hopkins, L. F. Berzak
    Bradley, D. K.
    Casey, D. T.
    Clark, D. S.
    Dewald, E. L.
    Dittrich, T. R.
    Divol, L.
    Doppner, T.
    Field, J. E.
    Haan, S. W.
    Hall, G. N.
    Hammel, B. A.
    Hinkel, D. E.
    Ho, D. D.
    Hohenberger, M.
    Izumi, N.
    Jones, O. S.
    Khan, S. F.
    Kline, J. L.
    Kritcher, A. L.
    Landen, O. L.
    LePape, S.
    Ma, T.
    MacKinnon, A. J.
    MacPhee, A. G.
    Masse, L.
    Milovich, J. L.
    Nikroo, A.
    Pak, A.
    Park, H-S
    Peterson, J. L.
    Robey, H. F.
    Ross, J. S.
    Salmonson, J. D.
    Smalyuk, V. A.
    Spears, B. K.
    Stadermann, M.
    Suter, L. J.
    Thomas, C. A.
    Tommasini, R.
    Turnbull, D. P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
  • [2] Design of the ion-optics for the MRSt neutron spectrometer at the National Ignition Facility (NIF)
    Berg, G. P. A.
    Frenje, J. A.
    Kunimune, J. H.
    Trosseille, C. A.
    Couder, M.
    Kilkenny, J. D.
    Mackinnon, A. J.
    Moore, A. S.
    Waltz, C. S.
    Wiescher, M. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (03)
  • [3] PROSPECTS FOR DEMONSTRATING DOUBLE-SHELL IGNITION ON THE NATIONAL IGNITION FACILITY
    Amendt, Peter
    Cerjan, Charlie
    Milovich, Jose
    Robey, Harry
    CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, PROCEEDINGS, 2009, 1154 : 234 - 234
  • [4] Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility
    Dewald, E. L.
    Thomas, C.
    Hunter, S.
    Divol, L.
    Meezan, N.
    Glenzer, S. H.
    Suter, L. J.
    Bond, E.
    Kline, J. L.
    Celeste, J.
    Bradley, D.
    Bell, P.
    Kauffman, R. L.
    Kilkenny, J.
    Landen, O. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)
  • [5] A polar-drive shock-ignition design for the National Ignition Facility
    Anderson, K. S.
    Betti, R.
    McKenty, P. W.
    Collins, T. J. B.
    Hohenberger, M.
    Theobald, W.
    Craxton, R. S.
    Delettrez, J. A.
    Lafon, M.
    Marozas, J. A.
    Nora, R.
    Skupsky, S.
    Shvydky, A.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [6] Precision Shock Tuning on the National Ignition Facility
    Robey, H. F.
    Celliers, P. M.
    Kline, J. L.
    Mackinnon, A. J.
    Boehly, T. R.
    Landen, O. L.
    Eggert, J. H.
    Hicks, D.
    Le Pape, S.
    Farley, D. R.
    Bowers, M. W.
    Krauter, K. G.
    Munro, D. H.
    Jones, O. S.
    Milovich, J. L.
    Clark, D.
    Spears, B. K.
    Town, R. P. J.
    Haan, S. W.
    Dixit, S.
    Schneider, M. B.
    Dewald, E. L.
    Widmann, K.
    Moody, J. D.
    Doeppner, T. D.
    Radousky, H. B.
    Nikroo, A.
    Kroll, J. J.
    Hamza, A. V.
    Horner, J. B.
    Bhandarkar, S. D.
    Dzenitis, E.
    Alger, E.
    Giraldez, E.
    Castro, C.
    Moreno, K.
    Haynam, C.
    LaFortune, K. N.
    Widmayer, C.
    Shaw, M.
    Jancaitis, K.
    Parham, T.
    Holunga, D. M.
    Walters, C. F.
    Haid, B.
    Malsbury, T.
    Trummer, D.
    Coffee, K. R.
    Burr, B.
    Berzins, L. V.
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [7] Delivering laser performance conditions to enable fusion ignition, and beyond at the National Ignition Facility
    Di Nicola, J. M.
    Suratwala, T.
    Pelz, L.
    Heebner, J.
    Aden, R.
    Alessi, D.
    Amula, S.
    Barnes, A.
    Bhasker, A.
    Bond, T.
    Bude, J.
    Buckley, B.
    Browning, D.
    Cabral, J.
    CalonicoSoto, A.
    Carr, W.
    Chang, L.
    Chou, J.
    Cohen, S.
    Cope, T.
    Cross, D.
    Deveno, R.
    DeVore, P.
    Deland, A.
    Di Nicola, P.
    Dumbacher, T.
    Erbert, G.
    Erickson, M.
    Erlandson, A.
    Filip, C.
    Fratanduono, D.
    Gottesman, N.
    Gowda, A.
    Handler, A.
    Hernandez, V. J.
    Herriot, S.
    Horner, J.
    House, R.
    Kalantar, D.
    Kegelmeyer, L.
    Kinsella, C.
    Lanier, T.
    Larson, D.
    Le Galloudec, B.
    Lusk, J.
    MacGowan, B.
    McLaren, S.
    Manes, K.
    McCandless, K.
    Mennerat, G.
    HIGH ENERGY DENSITY PHYSICS, 2024, 52
  • [8] Double cylinder implosion experiments at the National Ignition Facility
    Sauppe, J. P.
    Sagert, I.
    Day, T. H.
    Flippo, K. A.
    Kline, J. L.
    Kot, L.
    Palaniyappan, S.
    Roycroft, R. A.
    Schmidt, D. W.
    HIGH ENERGY DENSITY PHYSICS, 2024, 53
  • [9] Radiochemical capabilities for astrophysics experiments at the national ignition facility
    Despotopulos, John D.
    Gharibyan, Narek
    Moody, Kenton J.
    Yeamans, Charles
    Velsko, Carol
    Shaughnessy, Dawn A.
    FRONTIERS IN PHYSICS, 2022, 10
  • [10] The NIF Ignition Program: progress and planning
    Hammel, B. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) : B497 - B506