Pointwise convergence problem of the one-dimensional Boussinesq-type equation

被引:0
|
作者
Wang, Weimin [1 ]
Yan, Wei [1 ]
Zhang, Yating [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Boussinesq equation; pointwise convergence problem; Strichartz estimates; LOCAL WELL-POSEDNESS; MAXIMAL-FUNCTION; SCHRODINGER-EQUATIONS; GLOBAL EXISTENCE; SOBOLEV SPACES; SCATTERING; REGULARITY; STABILITY;
D O I
10.1002/mma.10408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial data problem of the one-dimensional Boussinesq-type equation. Inspired by the work of Compaan et al. (Int. Math. Res. Not. 2021, 599-650), by using the Fourier restriction norm method, we investigate the pointwise convergence of the one-dimensional Boussinesq equation and cubic Boussinesq equation. We also only use the Strichartz estimates instead of Fourier restriction norm method to establish convergence conclusions of the one-dimensional cubic Boussinesq equation. The key ingredients are some Strichartz estimates and high-low frequency decomposition related to the nonlinear part of the integral form solution in the Duhamel form and the maximal function estimate related to inhomogeneous estimate.
引用
收藏
页码:1750 / 1767
页数:18
相关论文
共 50 条
  • [41] Linear Convergence of a Rearrangement Method for the One-dimensional Poisson Equation
    Kao, Chiu-Yen
    Mohammadi, Seyyed Abbas
    Osting, Braxton
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (01)
  • [42] A SIMPLE ANALYTICAL SOLUTION FOR THE BOUSSINESQ ONE-DIMENSIONAL GROUNDWATER-FLOW EQUATION
    TOLIKAS, PK
    SIDIROPOULOS, EG
    TZIMOPOULOS, CD
    WATER RESOURCES RESEARCH, 1984, 20 (01) : 24 - 28
  • [43] A HIGHLY ACCURATE FINITE-DIFFERENCE SCHEME FOR A BOUSSINESQ-TYPE EQUATION
    MOHSEN, A
    ELZOHEIRY, H
    ISKANDAR, L
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 55 (2-3) : 201 - 212
  • [44] Existence of Local Solution for a Double Dispersive Bad Boussinesq-Type Equation
    Dundar, Nurhan
    Polat, Necat
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 211 - 213
  • [45] The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation
    Totieva, Zh. D.
    Durdiev, D. K.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 118 - 132
  • [46] AN IDENTIFICATION PROBLEM FOR A NONLINEAR ONE-DIMENSIONAL WAVE EQUATION
    Lorenzi, Alfredo
    Sinestrari, Eugenio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) : 5253 - 5271
  • [47] A problem with nonlocal conditions for a one-dimensional parabolic equation
    Beylin, A. B.
    Bogatov, A., V
    Pulkina, L. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2022, 26 (02): : 380 - 395
  • [48] A moment problem for one-dimensional nonlinear pseudoparabolic equation
    Dai, Dao-Qing
    Huang, Yu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) : 1057 - 1067
  • [49] The problem of determining the one-dimensional kernel of the electroviscoelasticity equation
    D. K. Durdiev
    Zh. D. Totieva
    Siberian Mathematical Journal, 2017, 58 : 427 - 444
  • [50] The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation
    Zh. D. Totieva
    D. K. Durdiev
    Mathematical Notes, 2018, 103 : 118 - 132