Coupling Phase Field Crystal and Field Dislocation Mechanics for a consistent description of dislocation structure and elasticity

被引:0
作者
Upadhyay, Manas, V [1 ]
Vinals, Jorge [2 ]
机构
[1] Inst Polytech Paris, Ecole Polytech, Lab Mecan Solides LMS, CNRS UMR 7649, Route Saclay, F-91120 Palaiseau, France
[2] Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Dislocations; Elasticity; Phase field; Stresses; Distortions; DEFECT DYNAMICS; MODEL; DESIGN; SCALES;
D O I
10.1016/j.euromechsol.2024.105419
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work addresses differences in predicted elastic fields created by dislocations either by the Phase Field Crystal (PFC) model, or by static Field Dislocation Mechanics (FDM). The PFC order parameter describes the topological content of the lattice, but it fails to correctly capture the elastic distortion. In contrast, static FDM correctly captures the latter but requires input about defect cores. The case of a dislocation dipole in two dimensional, isotropic, elastic medium is studied, and a weak coupling is introduced between the two models. The PFC model produces compact and stable dislocation cores, free of any singularity, i.e., diffuse. The PFC predicted dislocation density field (a measure of the topological defect content) is used as the source (input) for the static FDM problem. This coupling allows a critical analysis of the relative role played by configurational (from PFC) and elastic (from static FDM) fields in the theory, and of the consequences of the lack of elastic relaxation in the diffusive evolution of the PFC order parameter.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Dislocation Motion in an Electric Field
    N. Ed. Smirnov
    Moscow University Physics Bulletin, 2018, 73 : 573 - 578
  • [22] Coupling the Phase Field Method for diffusive transformations with dislocation density-based crystal plasticity: Application to Ni-based superalloys
    Cottura, M.
    Appolaire, B.
    Finel, A.
    Le Bouar, Y.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 94 : 473 - 489
  • [23] Numerical evaluation of dislocation loop sink strengths: A phase-field approach
    Rouchette, H.
    Thuinet, L.
    Legris, A.
    Ambard, A.
    Domain, C.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 352 : 31 - 35
  • [24] Recent progress in the phase-field dislocation dynamics method
    Xu, Shuozhi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [25] Phase-field modeling of dislocation-interstitial interactions
    Fey, Lauren T. W.
    Reynolds, Colleen
    Hunter, Abigail
    Beyerlein, Irene J.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 179
  • [26] Quantitative phase field model for dislocation sink strength calculations
    Rouchette, H.
    Thuinet, L.
    Legris, A.
    Ambard, A.
    Domain, C.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 88 : 50 - 60
  • [27] A FFT-based numerical implementation of mesoscale field dislocation mechanics: Application to two-phase laminates
    Djaka, Komlan S.
    Berbenni, Stephane
    Taupin, Vincent
    Lebensohn, Ricardo A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 184 : 136 - 152
  • [28] A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics
    Berbenni, Stephane
    Taupin, Vincent
    Djaka, Komlan Senam
    Fressengeas, Claude
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (23-24) : 4157 - 4175
  • [29] Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal
    Yamanaka, Akinori
    McReynolds, Kevin
    Voorhees, Peter W.
    ACTA MATERIALIA, 2017, 133 : 160 - 171
  • [30] Concurrent interface shearing and dislocation core change on the glide dislocation-interface interactions: a phase field approach
    Zheng, Songlin
    Ni, Yong
    He, Linghui
    AIMS MATERIALS SCIENCE, 2015, 2 (03) : 260 - 278