Defining and Analyzing New Classes Associated with (λ,γ)-Symmetrical Functions and Quantum Calculus

被引:0
作者
Louati, Hanen [1 ,2 ]
Al-Rezami, Afrah Y. [3 ,4 ]
Darem, Abdulbasit A. [5 ]
Alsarari, Fuad [6 ]
机构
[1] Northeren Border Univ, Coll Sci, Dept Math, Ar Ar 73222, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Lab PDEs & Applicat LR03ES04, Tunis 1068, Tunisia
[3] Prince Sattam Bin Abdulaziz Univ, Math Dept, Al Kharj 16278, Saudi Arabia
[4] Sanaa Univ, Dept Stat & Informat, Sanaa 1247, Yemen
[5] Northern Border Univ, Coll Sci, Dept Comp Sci, Ar Ar 73222, Saudi Arabia
[6] Taibah Univ, Coll Sci, Dept Math & Stat, Yanbu 46423, Saudi Arabia
关键词
convolution; Janowski functions; q-calculus; (lambda; gamma)-symmetric points;
D O I
10.3390/math12162603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce new classes of functions defined within the open unit disk by integrating the concepts of (lambda,gamma)-symmetrical functions, generalized Janowski functions, and quantum calculus. We derive a structural formula and a representation theorem for the class S-q(lambda,gamma)(x,y,z). Utilizing convolution techniques and quantum calculus, we investigate convolution conditions supported by examples and corollary, establishing sufficient conditions. Additionally, we derive properties related to coefficient estimates, which further elucidate the characteristics of the defined function classes.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] A generalization of starlike functions of order alpha
    Agrawal, Sarita
    Sahoo, Swadesh Kumar
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (01) : 15 - 27
  • [2] A few results on generalized Janowski type functions associated with (j, k)-symmetrical functions
    Al Sarari, F. S. M.
    Frasin, B. A.
    Al-Hawary, T.
    Latha, S.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 195 - 205
  • [3] Al Sarari FS, 2017, KOREAN J MATH, V25, P389, DOI 10.11568/kjm.2017.25.3.389
  • [4] Al-Sarari F., 2013, Math. Mag, V21, P556
  • [5] Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions
    Alsarari, Fuad
    Alzahrani, Samirah
    [J]. SYMMETRY-BASEL, 2022, 14 (07):
  • [6] Gandhi S., 2017, Bull. Korean Math. Soc, V54, P807
  • [7] On a class of analytic functions related to conic domains involving q-calculus
    Govindaraj, M.
    Sivasubramanian, S.
    [J]. ANALYSIS MATHEMATICA, 2017, 43 (03) : 475 - 487
  • [8] Ismail M.E., 1990, Complex Var. Theor. Appl., V14, P77, DOI DOI 10.1080/17476939008814407
  • [9] Jackson F.H., 1910, Quart. J. Pure Appl. Math., V41, P193, DOI DOI 10.1017/S0080456800002751
  • [10] Jackson FH., 1908, T ROY SOC EDINBURGH, V46, P253, DOI [DOI 10.1017/S0080456800002751, 10.1017/S0080456800002751]