Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques

被引:0
作者
Liu, Jing [1 ]
Chen, Yingying [1 ]
Huang, Kai [2 ,3 ]
Guan, Xiao [2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai 200093, Peoples R China
[3] Natl Grain Ind Urban Grain & Oil Secur, Technol Innovat Ctr, Shanghai 200093, Peoples R China
关键词
missense variant; pathogenicity prediction; deep learning; attention mechanisms; AMINO-ACID SUBSTITUTIONS; MUTATIONS; SERVER; DELETERIOUSNESS; ANNOTATIONS; ELEMENTS; IMPACT; SIFT;
D O I
10.3390/biom14091105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditional methods, often compromised by suboptimal feature selection and limited generalizability, are outpaced by the enhanced classification model, MissenseNet (Missense Classification Network). This model, advancing beyond standard predictive features, incorporates structural insights from AlphaFold2 protein predictions, thus optimizing structural data utilization. MissenseNet, built on the ShuffleNet architecture, incorporates an encoder-decoder framework and a Squeeze-and-Excitation (SE) module designed to adaptively adjust channel weights and enhance feature fusion and interaction. The model's efficacy in classifying pathogenicity has been validated through superior accuracy compared to conventional methods and by achieving the highest areas under the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (Area Under the Curve and Area Under the Precision-Recall Curve) in an independent test set, thus underscoring its superiority.
引用
收藏
页数:21
相关论文
共 62 条
  • [51] MutationTaster2: mutation prediction for the deep-sequencing age
    Schwarz, Jana Marie
    Cooper, David N.
    Schuelke, Markus
    Seelow, Dominik
    [J]. NATURE METHODS, 2014, 11 (04) : 361 - 362
  • [52] Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models
    Shihab, Hashem A.
    Gough, Julian
    Cooper, David N.
    Stenson, Peter D.
    Barker, Gary L. A.
    Edwards, Keith J.
    Day, Ian N. M.
    Gaunt, Tom R.
    [J]. HUMAN MUTATION, 2013, 34 (01) : 57 - 65
  • [53] Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
    Siepel, A
    Bejerano, G
    Pedersen, JS
    Hinrichs, AS
    Hou, MM
    Rosenbloom, K
    Clawson, H
    Spieth, J
    Hillier, LW
    Richards, S
    Weinstock, GM
    Wilson, RK
    Gibbs, RA
    Kent, WJ
    Miller, W
    Haussler, D
    [J]. GENOME RESEARCH, 2005, 15 (08) : 1034 - 1050
  • [54] Structural coverage of the proteome for pharmaceutical applications
    Somody, Joseph C.
    MacKinnon, Stephen S.
    Windemuth, Andreas
    [J]. DRUG DISCOVERY TODAY, 2017, 22 (12) : 1792 - 1799
  • [55] Predicting the clinical impact of human mutation with deep neural networks
    Sundaram, Laksshman
    Gao, Hong
    Padigepati, Samskruthi Reddy
    McRae, Jeremy F.
    Li, Yanjun
    Kosmicki, Jack A.
    Fritzilas, Nondas
    Hakenberg, Jorg
    Dutta, Anindita
    Shon, John
    Xu, Jinbo
    Batzloglou, Serafim
    Li, Xiaolin
    Farh, Kyle Kai-How
    [J]. NATURE GENETICS, 2018, 50 (08) : 1161 - +
  • [56] InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution
    Takeda, Jun-ichi
    Nanatsue, Kentaro
    Yamagishi, Ryosuke
    Ito, Mikako
    Haga, Nobuhiko
    Hirata, Hiromi
    Ogi, Tomoo
    Ohno, Kinji
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [57] ADHD classification using auto-encoding neural network and binary hypothesis testing
    Tang, Yibin
    Sun, Jia
    Wang, Chun
    Zhong, Yuan
    Jiang, Aimin
    Liu, Gang
    Liu, Xiaofeng
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 123
  • [58] PANTHER: A library of protein families and subfamilies indexed by function
    Thomas, PD
    Campbell, MJ
    Kejariwal, A
    Mi, HY
    Karlak, B
    Daverman, R
    Diemer, K
    Muruganujan, A
    Narechania, A
    [J]. GENOME RESEARCH, 2003, 13 (09) : 2129 - 2141
  • [59] Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns
    Turner, Tychele N.
    Douville, Christopher
    Kim, Dewey
    Stenson, Peter D.
    Cooper, David N.
    Chakravarti, Aravinda
    Karchin, Rachel
    [J]. HUMAN MOLECULAR GENETICS, 2015, 24 (21) : 5995 - 6002
  • [60] SIFT missense predictions for genomes
    Vaser, Robert
    Adusumalli, Swarnaseetha
    Leng, Sim Ngak
    Sikic, Mile
    Ng, Pauline C.
    [J]. NATURE PROTOCOLS, 2016, 11 (01) : 1 - 9