Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques

被引:0
作者
Liu, Jing [1 ]
Chen, Yingying [1 ]
Huang, Kai [2 ,3 ]
Guan, Xiao [2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai 200093, Peoples R China
[3] Natl Grain Ind Urban Grain & Oil Secur, Technol Innovat Ctr, Shanghai 200093, Peoples R China
关键词
missense variant; pathogenicity prediction; deep learning; attention mechanisms; AMINO-ACID SUBSTITUTIONS; MUTATIONS; SERVER; DELETERIOUSNESS; ANNOTATIONS; ELEMENTS; IMPACT; SIFT;
D O I
10.3390/biom14091105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditional methods, often compromised by suboptimal feature selection and limited generalizability, are outpaced by the enhanced classification model, MissenseNet (Missense Classification Network). This model, advancing beyond standard predictive features, incorporates structural insights from AlphaFold2 protein predictions, thus optimizing structural data utilization. MissenseNet, built on the ShuffleNet architecture, incorporates an encoder-decoder framework and a Squeeze-and-Excitation (SE) module designed to adaptively adjust channel weights and enhance feature fusion and interaction. The model's efficacy in classifying pathogenicity has been validated through superior accuracy compared to conventional methods and by achieving the highest areas under the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (Area Under the Curve and Area Under the Precision-Recall Curve) in an independent test set, thus underscoring its superiority.
引用
收藏
页数:21
相关论文
共 62 条
  • [1] Accurate structure prediction of biomolecular interactions with AlphaFold 3
    Abramson, Josh
    Adler, Jonas
    Dunger, Jack
    Evans, Richard
    Green, Tim
    Pritzel, Alexander
    Ronneberger, Olaf
    Willmore, Lindsay
    Ballard, Andrew J.
    Bambrick, Joshua
    Bodenstein, Sebastian W.
    Evans, David A.
    Hung, Chia-Chun
    O'Neill, Michael
    Reiman, David
    Tunyasuvunakool, Kathryn
    Wu, Zachary
    Zemgulyte, Akvile
    Arvaniti, Eirini
    Beattie, Charles
    Bertolli, Ottavia
    Bridgland, Alex
    Cherepanov, Alexey
    Congreve, Miles
    Cowen-Rivers, Alexander I.
    Cowie, Andrew
    Figurnov, Michael
    Fuchs, Fabian B.
    Gladman, Hannah
    Jain, Rishub
    Khan, Yousuf A.
    Low, Caroline M. R.
    Perlin, Kuba
    Potapenko, Anna
    Savy, Pascal
    Singh, Sukhdeep
    Stecula, Adrian
    Thillaisundaram, Ashok
    Tong, Catherine
    Yakneen, Sergei
    Zhong, Ellen D.
    Zielinski, Michal
    Zidek, Augustin
    Bapst, Victor
    Kohli, Pushmeet
    Jaderberg, Max
    Hassabis, Demis
    Jumper, John M.
    [J]. NATURE, 2024, 630 (8016) : 493 - 500
  • [2] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [3] Deep learning for computational biology
    Angermueller, Christof
    Parnamaa, Tanel
    Parts, Leopold
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
  • [4] nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms
    Bao, L
    Zhou, M
    Cui, Y
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W480 - W482
  • [5] PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
    Bendl, Jaroslav
    Stourac, Jan
    Salanda, Ondrej
    Pavelka, Antonin
    Wieben, Eric D.
    Zendulka, Jaroslav
    Brezovsky, Jan
    Damborsky, Jiri
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (01)
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] SNAP: predict effect of non-synonymous polymorphisms on function
    Bromberg, Yana
    Rost, Burkhard
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 (11) : 3823 - 3835
  • [8] Can AlphaFold2 predict the impact of missense mutations on structure?
    Buel, Gwen R.
    Walters, Kylie J.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (01) : 1 - 2
  • [9] Functional Annotations Improve the Predictive Score of Human Disease-Related Mutations in Proteins
    Calabrese, Remo
    Capriotti, Emidio
    Fariselli, Piero
    Martelli, Pier Luigi
    Casadio, Rita
    [J]. HUMAN MUTATION, 2009, 30 (08) : 1237 - 1244
  • [10] Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information
    Capriotti, E.
    Calabrese, R.
    Casadio, R.
    [J]. BIOINFORMATICS, 2006, 22 (22) : 2729 - 2734