Lightweight multi-scale dynamic selection network for medical image segmentation

被引:0
作者
Dong, Xue-Mei [1 ,2 ]
Sun, Yu [1 ]
Wang, Lili [1 ,2 ]
机构
[1] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
[2] Zhejiang Gongshang Univ, Collaborat Innovat Ctr Stat Data Engn Technol & Ap, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Convolutional neural network; Multi-scale dynamic selection module; PixelShuffle; PixelUnshuffle; NODULES;
D O I
10.1016/j.ins.2024.120884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation technology can assist doctors in accurately diagnosing and treating diseases. However, the diversity of segmented targets in scale and shape, as well as the complexity of the background environment, pose challenges for existing segmentation methods. In this context, we propose two effective deep neural networks, the multi -scale dynamic selection network (MDSNet) and its lightweight version MDSNet-Light for medical image segmentation. In MDSNet, we design a multi -scale dynamic selection module to capture multi -scale contextual information and dynamically adjust the acceptance domain of the feature map to achieve feature fusion at the optimal scale. We introduce PixelShuffle and PixelUnshuffle as sampling methods to effectively alleviate information loss issues for small-scale objects caused by pooling. Experimental results show that MDSNet outperforms eight existing superior neural networks in the test data of the publicly available dataset LIDC-IDRI on four evaluation indicators. And MDSNet-Light achieves a good balance between network performance and computational complexity, providing an option for applications in limited computing resource scenarios.
引用
收藏
页数:13
相关论文
共 43 条
[1]  
Agrawal Ritu, 2018, Journal of the Institution of Engineers (India): Series B (Electrical, Electronics & Telecommunication and Computer Engineering), V99, P173, DOI [10.1007/s40031-018-0314-z, 10.1007/s40031-018-0314-z]
[2]   A Bi-FPN-Based Encoder-Decoder Model for Lung Nodule Image Segmentation [J].
Annavarapu, Chandra Sekhara Rao ;
Parisapogu, Samson Anosh Babu ;
Keetha, Nikhil Varma ;
Donta, Praveen Kumar ;
Rajita, Gurindapalli .
DIAGNOSTICS, 2023, 13 (08)
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   LiteDepthwiseNet: A Lightweight Network for Hyperspectral Image Classification [J].
Cui, Benlei ;
Dong, Xue-Mei ;
Zhan, Qiaoqiao ;
Peng, Jiangtao ;
Sun, Weiwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach [J].
Dehmeshi, Jamshid ;
Amin, Hamdan ;
Valdivieso, Manlio ;
Ye, Xujiong .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) :467-480
[9]   RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism [J].
Ding, Weiping ;
Sun, Ying ;
Huang, Jiashuang ;
Ju, Hengrong ;
Zhang, Chongsheng ;
Yang, Guang ;
Lin, Chin-Teng .
INFORMATION SCIENCES, 2024, 657
[10]   MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT [J].
Ding, Weiping ;
Abdel-Basset, Mohamed ;
Hawash, Hossam ;
Pedrycz, Witold .
INFORMATION SCIENCES, 2023, 623 :20-39