Quality of care assessment for non-small cell lung cancer patients: transforming routine care data into a continuous improvement system

被引:1
作者
Sanchez, Juan C. [1 ]
Nunez-Garcia, Beatriz [1 ]
Garitaonaindia, Yago [1 ]
Calvo, Virginia [1 ]
Blanco, Mariola [1 ]
Martin-Vegue, Arturo Ramos [2 ]
Royuela, Ana [3 ]
Manso, Marta [4 ]
Cantos, Blanca [1 ]
Mendez, Miriam [1 ]
Collazo-Lorduy, Ana [1 ]
Provencio, Mariano [1 ]
机构
[1] Puerta de Hierro Majadahonda Univ Hosp, Med Oncol Dept, C Joaquin Rodrigo 1, Madrid 28222, Spain
[2] Puerta de Hierro Majadahonda Univ Hosp, Admiss & Clin Documentat Dept, Madrid, Spain
[3] Hosp Univ Puerta de Hierro Majadahonda, Biostat Unit, IDIPHISA, CIBERESP,ISCIII, Madrid, Spain
[4] Puerta de Hierro Majadahonda Univ Hosp, Hosp Pharm Serv, Madrid, Spain
关键词
Quality of care; Quality indicators; Lung neoplasms; Real world data; Quality improvement; INDICATORS; FRAMEWORK;
D O I
10.1007/s12094-024-03658-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeThe complexity of cancer care requires planning and analysis to achieve the highest level of quality. We aim to measure the quality of care provided to patients with non-small cell lung cancer (NSCLC) using the data contained in the hospital's information systems, in order to establish a system of continuous quality improvement.Methods/PatientsRetrospective observational cohort study conducted in a university hospital in Spain, consecutively including all patients with NSCLC treated between 2016 and 2020. A total of 34 quality indicators were selected based on a literature review and clinical practice guideline recommendations, covering care processes, timeliness, and outcomes. Applying data science methods, an analysis algorithm, based on clinical guideline recommendations, was set up to integrate activity and administrative data extracted from the Electronic Patient Record along with clinical data from a lung cancer registry.ResultsThrough data generated in routine practice, it has been feasible to reconstruct the therapeutic trajectory and automatically calculate quality indicators using an algorithm based on clinical practice guidelines. Process indicators revealed high adherence to guideline recommendations, and outcome indicators showed favorable survival rates compared to previous data.ConclusionsOur study proposes a methodology to take advantage of the data contained in hospital information sources, allowing feedback and repeated measurement over time, developing a tool to understand quality metrics in accordance with evidence-based recommendations, ultimately seeking a system of continuous improvement of the quality of health care.
引用
收藏
页码:1047 / 1061
页数:15
相关论文
共 29 条
[1]   Quality measurement for cardiovascular diseases and cancer in hospital value-based healthcare: a systematic review of the literature [J].
Abdalla, Rawia ;
Pavlova, Milena ;
Hussein, Mohammed ;
Groot, Wim .
BMC HEALTH SERVICES RESEARCH, 2022, 22 (01)
[2]   Indicators of guideline-concordant care in lung cancer defined with a modified Delphi method and piloted in a cohort of over 5,800 cases [J].
Andreano, Anita ;
Valsecchi, Maria Grazia ;
Russo, Antonio Giampiero ;
Siena, Salvatore .
ARCHIVES OF PUBLIC HEALTH, 2021, 79 (01)
[3]  
[Anonymous], 2023, SEER*Explorer: An interactive website for SEER cancer statistics
[4]   HISTORY OF MEDICINE Donabedian's Lasting Framework for Health Care Quality [J].
Ayanian, John Z. ;
Markel, Howard .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (03) :205-207
[5]   Lessons learned from the Dutch Institute for Clinical Auditing: the Dutch model for quality assurance in lung cancer treatment [J].
Beck, Naomi ;
Hoeijmakers, Fieke ;
Wiegman, Erwin M. ;
Smit, Hans J. M. ;
Schramel, Franz M. ;
Steup, Willem H. ;
Verhagen, Ad F. T. M. ;
Schreurs, Wilhelmina H. ;
Wouters, Michel W. J. M. .
JOURNAL OF THORACIC DISEASE, 2018, 10 :S3472-S3485
[6]   European Respiratory Society guideline on various aspects of quality in lung cancer care [J].
Blum, Torsten Gerriet ;
Morgan, Rebecca L. ;
Durieux, Valerie ;
Chorostowska-Wynimko, Joanna ;
Baldwin, David R. ;
Boyd, Jeanette ;
Faivre-Finn, Corinne ;
Galateau-Salle, Francoise ;
Gamarra, Fernando ;
Grigoriu, Bogdan ;
Hardavella, Georgia ;
Hauptmann, Michael ;
Jakobsen, Erik ;
Jovanovic, Dragana ;
Knaut, Paul ;
Massard, Gilbert ;
McPhelim, John ;
Meert, Anne-Pascale ;
Milroy, Robert ;
Muhr, Riccardo ;
Mutti, Luciano ;
Paesmans, Marianne ;
Powell, Pippa ;
Putora, Paul Martin ;
Rawlinson, Janette ;
Rich, Anna L. ;
Rigau, David ;
de Ruysscher, Dirk ;
Sculier, Jean-Paul ;
Schepereel, Arnaud ;
Subotic, Dragan ;
Van Schil, Paul ;
Tonia, Thomy ;
Williams, Clare ;
Berghmans, Thierry .
EUROPEAN RESPIRATORY JOURNAL, 2023, 61 (02)
[7]   Real-world data: towards achieving the achievable in cancer care [J].
Booth, Christopher M. ;
Karim, Safiya ;
Mackillop, William J. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (05) :312-325
[8]   Feasibility of evaluating quality cancer care using registry data and electronic health records: a population-based study [J].
Caldarella, Adele ;
Amunni, Gianni ;
Angiolini, Catia ;
Crocetti, Emanuele ;
Di Costanzo, Francesco ;
Di Leo, Angelo ;
Giusti, Francesco ;
Pegna, Andrea Lopes ;
Mantellini, Paola ;
Luzzatto, Lucio ;
Paci, Eugenio .
INTERNATIONAL JOURNAL FOR QUALITY IN HEALTH CARE, 2012, 24 (04) :411-418
[9]   Quality indicators in lung cancer: a review and analysis [J].
Chiew, Kim-Lin ;
Sundaresan, Puma ;
Jalaludin, Bin ;
Chong, Shanley ;
Vinod, Shalini K. .
BMJ OPEN QUALITY, 2021, 10 (03)
[10]   Applying Data Science methods and tools to unveil healthcare use of lung cancer patients in a teaching hospital in Spain [J].
Cruz-Bermudez, J. L. ;
Parejo, C. ;
Martinez-Ruiz, F. ;
Sanchez-Gonzalez, J. C. ;
Ramos Martin-Vegue, A. ;
Royuela, A. ;
Rodriguez-Gonzalez, A. ;
Menasalvas-Ruiz, E. ;
Provencio, M. .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2019, 21 (11) :1472-1481