The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer

被引:2
作者
Wang, Youzhi [1 ]
Wu, Ning [2 ]
Li, Junbo [1 ]
Liang, Jiaming [1 ]
Thou, Diansheng [1 ]
Cao, Qian [1 ]
Li, Xuesong [3 ]
Jiang, Ning [1 ]
机构
[1] Tianjin Med Univ, Hosp 2, Tianjin Inst Urol, Dept Urol, Tianjin 300211, Peoples R China
[2] Peking Univ, Hosp 3, Ctr Reprod Med, Dept Obstet & Gynecol,State Key Lab Female Fertil, Beijing 100191, Peoples R China
[3] Peking Univ, Treatment Ctr Natl Urol Canc Ctr, Beijing Key Lab Urogenital Dis Male Mol Diag, Dept Urol,Hosp 1,Inst Urol,Natl UrolCanc Ctr, Beijing 100034, Peoples R China
基金
中国国家自然科学基金;
关键词
NEPC; Autophagy; ferroptosis; FUNCTIONAL UP-REGULATION; NEDD8-ACTIVATING ENZYME; REGULATES AUTOPHAGY; DUAL ROLE; INHIBITOR; CALCIUM; LUNG; ACTIVATION; APOPTOSIS; PROMOTES;
D O I
10.1016/j.phrs.2024.107162
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMPactivated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
引用
收藏
页数:14
相关论文
共 210 条
[1]   Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965 [J].
Ahwazi, Danial ;
Neopane, Katyayanee ;
Markby, Greg R. ;
Kopietz, Franziska ;
Ovens, Ashley J. ;
Dall, Morten ;
Hassing, Anna S. ;
Graesle, Pamina ;
Alshuweishi, Yazeed ;
Treebak, Jonas T. ;
Salt, Ian P. ;
Goransson, Olga ;
Zeqiraj, Elton ;
Scott, John W. ;
Sakamoto, Kei .
BIOCHEMICAL JOURNAL, 2021, 478 (15) :2977-2997
[2]   Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer [J].
Akbarzadeh, Maryam ;
Mihanfar, Ainaz ;
Akbarzadeh, Shabnam ;
Yousefi, Bahman ;
Majidinia, Maryam .
LIFE SCIENCES, 2021, 285
[3]   Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways [J].
Al-Bari, Md Abdul Alim ;
Xu, Pingyong .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2020, 1467 (01) :3-20
[4]   Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation [J].
Alshalalfa, Mohammed ;
Abou-Ouf, Hatem ;
Davicioni, Elai ;
Karnes, R. Jeffrey ;
Alhajj, Reda ;
Bismar, Tarek A. .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (08) :2223-2231
[5]   Modulation in the microRNA repertoire is responsible for the stage-specific effects of Akt suppression on murine neuroendocrine prostate cancer [J].
Alwhaibi, Abdulrahman ;
Gao, Fei ;
Artham, Sandeep ;
Hsia, Bernard M. ;
Mondal, Ashis ;
Kolhe, Ravindra ;
Somanath, Payaningal R. .
HELIYON, 2018, 4 (09)
[6]   Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines [J].
Araf, Yusha ;
Akter, Fariya ;
Tang, Yan-dong ;
Fatemi, Rabeya ;
Parvez, Md Sorwer Alam ;
Zheng, Chunfu ;
Hossain, Md Golzar .
JOURNAL OF MEDICAL VIROLOGY, 2022, 94 (05) :1825-1832
[7]   The ZnR/GPR39 Interacts With the CaSR to Enhance Signaling in Prostate and Salivary Epithelia [J].
Asraf, Hila ;
Salomon, Shimrit ;
Nevo, Andrey ;
Sekler, Israel ;
Mayer, Doris ;
Hershfinkel, Michal .
JOURNAL OF CELLULAR PHYSIOLOGY, 2014, 229 (07) :868-877
[8]   Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer [J].
Asrani, Kaushal ;
Torres, Alba F. C. ;
Woo, Juhyung ;
Vidotto, Thiago ;
Tsai, Harrison K. ;
Luo, Jun ;
Corey, Eva ;
Hanratty, Brian ;
Coleman, Ilsa ;
Yegnasubramanian, Srinivasan ;
De Marzo, Angelo M. ;
Nelson, Peter S. ;
Haffner, Michael C. ;
Lotan, Tamara L. .
JOURNAL OF PATHOLOGY, 2021, 255 (04) :425-437
[9]   Prevention of Prostate Cancer Morbidity and Mortality Primary Prevention and Early Detection [J].
Barry, Michael J. ;
Simmons, Leigh H. .
MEDICAL CLINICS OF NORTH AMERICA, 2017, 101 (04) :787-+
[10]   Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells [J].
Basit, Farhan ;
van Oppen, Lisanne M. P. E. ;
Schoeckel, Laura ;
Bossenbroek, Hasse M. ;
van Emst-de Vries, Sjenet E. ;
Hermeling, Johannes C. W. ;
Grefte, Sander ;
Kopitz, Charlotte ;
Heroult, Melanie ;
Willems, Peter H. G. M. ;
Koopman, Werner J. H. .
CELL DEATH & DISEASE, 2017, 8 :e2716-e2716