Optimistic sequential multi-agent reinforcement learning with motivational communication

被引:1
|
作者
Huang, Anqi [1 ]
Wang, Yongli [1 ]
Zhou, Xiaoliang [1 ]
Zou, Haochen [1 ]
Dong, Xu [1 ]
Che, Xun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent reinforcement learning; Policy gradient; Motivational communication; Reinforcement learning; Multi-agent system;
D O I
10.1016/j.neunet.2024.106547
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Centralized Training with Decentralized Execution (CTDE) is a prevalent paradigm in the field of fully cooperative Multi-Agent Reinforcement Learning (MARL). Existing algorithms often encounter two major problems: independent strategies tend to underestimate the potential value of actions, leading to the convergence on sub-optimal Nash Equilibria (NE); some communication paradigms introduce added complexity to the learning process, complicating the focus on the essential elements of the messages. To address these challenges, we propose a novel method called O ptimistic S equential S oft Actor Critic with M otivational C ommunication (OSSMC). The key idea of OSSMC is to utilize a greedy-driven approach to explore the potential value of individual policies, named optimistic Q-values, which serve as an upper bound for the Q-value of the current policy. We then integrate a sequential update mechanism with optimistic Q-value for agents, aiming to ensure monotonic improvement in the joint policy optimization process. Moreover, we establish motivational communication modules for each agent to disseminate motivational messages to promote cooperative behaviors. Finally, we employ a value regularization strategy from the Soft Actor Critic (SAC) method to maximize entropy and improve exploration capabilities. The performance of OSSMC was rigorously evaluated against a series of challenging benchmark sets. Empirical results demonstrate that OSSMC not only surpasses current baseline algorithms but also exhibits a more rapid convergence rate.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [2] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [3] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [4] Communication-Efficient and Federated Multi-Agent Reinforcement Learning
    Krouka, Mounssif
    Elgabli, Anis
    Ben Issaid, Chaouki
    Bennis, Mehdi
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) : 311 - 320
  • [5] A Review of Multi-Agent Reinforcement Learning Algorithms
    Liang, Jiaxin
    Miao, Haotian
    Li, Kai
    Tan, Jianheng
    Wang, Xi
    Luo, Rui
    Jiang, Yueqiu
    ELECTRONICS, 2025, 14 (04):
  • [6] Learning of Communication Codes in Multi-Agent Reinforcement Learning Problem
    Kasai, Tatsuya
    Tenmoto, Hiroshi
    Kamiya, Akimoto
    2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 1 - +
  • [7] Multi-Agent Reinforcement Learning for Coordinating Communication and Control
    Mason, Federico
    Chiariotti, Federico
    Zanella, Andrea
    Popovski, Petar
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1566 - 1581
  • [8] A survey of multi-agent deep reinforcement learning with communication
    Zhu, Changxi
    Dastani, Mehdi
    Wang, Shihan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2024, 38 (01)
  • [9] Multi-agent reinforcement learning based on local communication
    Wenxu Zhang
    Lei Ma
    Xiaonan Li
    Cluster Computing, 2019, 22 : 15357 - 15366
  • [10] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,