A lightweight self-supervised learning segmentation model for variable and complex high-resolution remote sensing images

被引:0
|
作者
Zhang, Ji Yong [1 ]
Li, De Guang [1 ]
Wu, Lin Li [1 ]
Shi, Xin Yao [1 ]
Wang, Bo [1 ]
机构
[1] Luoyang Normal Univ, Sch Informat Technol, 6 Jiqing Rd, Luoyang 471934, Henan, Peoples R China
关键词
Remote sensing; Self-supervised learning; Multi-scale contextual information; Computational complexity; SEMANTIC SEGMENTATION; NETWORKS; CLASSIFICATION; ALGORITHMS;
D O I
10.1016/j.asoc.2024.112061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity and variability of high-resolution remote sensing data, such as high intra-class variability and inter-class similarity, pose significant challenges to model segmentation. To address the problem, this paper constructs a lightweight self-supervised learning model for multi-label segmentation in the form of phased learning of multi-scale features. The model adopts axial depthwise separable convolutions to reduce computational complexity and enhance feature representation, utilizes dilated rates to capture large-scale and multi-scale contextual information for long-distance feature extraction, and incorporates convolution kernels of varying sizes to acquire both local and global feature information for the improved ability of learning feature representation. The experimental results show that our model achieves competitive performance and has smaller weight parameters, memory usage, and lower computational complexity compared with existing classical models that rely on large-scale weight parameters. Additionally, our ablation study delves into the encountered design issues to elucidate the rationality of our approach. The source code is avaiable: https://github.com/zhangjy2008327/remote-sensing-images.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] FR-GAN: A self-supervised learning method for super-resolution reconstruction of optical remote sensing images
    Zhong, Hai-Feng
    Sun, Hong-Mei
    Jia, Rui-Sheng
    Zhang, Qi
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (02)
  • [42] A New Instance Segmentation Model for High-Resolution Remote Sensing Images Based on Edge Processing
    Zhang, Xiaoying
    Shen, Jie
    Hu, Huaijin
    Yang, Houqun
    MATHEMATICS, 2024, 12 (18)
  • [43] Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning
    Tao C.
    Yin Z.
    Zhu Q.
    Li H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1122 - 1134
  • [44] Self-supervised audiovisual representation learning for remote sensing data
    Heidler, Konrad
    Mou, Lichao
    Hu, Di
    Jin, Pu
    Li, Guangyao
    Gan, Chuang
    Wen, Ji-Rong
    Zhu, Xiao Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
  • [45] LMFNet: Lightweight Multimodal Fusion Network for high-resolution remote sensing image segmentation
    Wang, Tong
    Chen, Guanzhou
    Zhang, Xiaodong
    Liu, Chenxi
    Wang, Jiaqi
    Tan, Xiaoliang
    Zhou, Wenlin
    He, Chanjuan
    PATTERN RECOGNITION, 2025, 164
  • [46] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [47] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [48] Hybrid region merging method for segmentation of high-resolution remote sensing images
    Zhang, Xueliang
    Xiao, Pengfeng
    Feng, Xuezhi
    Wang, Jiangeng
    Wang, Zuo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 : 19 - 28
  • [49] UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Chang, Zhanyuan
    Xu, Mingyu
    Wei, Yuwen
    Lian, Jie
    Zhang, Chongming
    Li, Chuanjiang
    SENSORS, 2024, 24 (20)
  • [50] Automatic Selection of Optimal Segmentation Scales for High-resolution Remote Sensing Images
    Yin, Ruijuan
    Shi, Runhe
    Gao, Wei
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY X, 2013, 8869