A lightweight self-supervised learning segmentation model for variable and complex high-resolution remote sensing images

被引:0
作者
Zhang, Ji Yong [1 ]
Li, De Guang [1 ]
Wu, Lin Li [1 ]
Shi, Xin Yao [1 ]
Wang, Bo [1 ]
机构
[1] Luoyang Normal Univ, Sch Informat Technol, 6 Jiqing Rd, Luoyang 471934, Henan, Peoples R China
关键词
Remote sensing; Self-supervised learning; Multi-scale contextual information; Computational complexity; SEMANTIC SEGMENTATION; NETWORKS; CLASSIFICATION; ALGORITHMS;
D O I
10.1016/j.asoc.2024.112061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity and variability of high-resolution remote sensing data, such as high intra-class variability and inter-class similarity, pose significant challenges to model segmentation. To address the problem, this paper constructs a lightweight self-supervised learning model for multi-label segmentation in the form of phased learning of multi-scale features. The model adopts axial depthwise separable convolutions to reduce computational complexity and enhance feature representation, utilizes dilated rates to capture large-scale and multi-scale contextual information for long-distance feature extraction, and incorporates convolution kernels of varying sizes to acquire both local and global feature information for the improved ability of learning feature representation. The experimental results show that our model achieves competitive performance and has smaller weight parameters, memory usage, and lower computational complexity compared with existing classical models that rely on large-scale weight parameters. Additionally, our ablation study delves into the encountered design issues to elucidate the rationality of our approach. The source code is avaiable: https://github.com/zhangjy2008327/remote-sensing-images.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images
    Cao, Yinxia
    Huang, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 157 - 176
  • [32] Res50-SimAM-ASPP-Unet: A Semantic Segmentation Model for High-Resolution Remote Sensing Images
    Cai, Jiajing
    Shi, Jinmei
    Leau, Yu-Beng
    Meng, Shangyu
    Zheng, Xiuyan
    Zhou, Jinghe
    IEEE ACCESS, 2024, 12 : 192301 - 192316
  • [33] FilterNet: Self-Supervised Learning for High-Resolution Photo Enhancement
    Cuenca-Jimenez, Pedro-Manuel
    Fernandez-Conde, Jesus
    Canas-Plaza, Jose-Maria
    IEEE ACCESS, 2022, 10 : 2669 - 2685
  • [34] LMFNet: Lightweight Multimodal Fusion Network for high-resolution remote sensing image segmentation
    Wang, Tong
    Chen, Guanzhou
    Zhang, Xiaodong
    Liu, Chenxi
    Wang, Jiaqi
    Tan, Xiaoliang
    Zhou, Wenlin
    He, Chanjuan
    PATTERN RECOGNITION, 2025, 164
  • [35] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [36] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [37] Domain Adaptable Self-supervised Representation Learning on Remote Sensing Satellite Imagery
    Chopra, Muskaan
    Chhipa, Prakash Chandra
    Mengi, Gopal
    Gupta, Varun
    Liwicki, Marcus
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [38] Self-supervised Learning to Improve Froth Images Segmentation
    Rumiantceva, Mariia
    Kriukov, Andrei
    Prokopov, Egor
    Efimova, Valeria
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 10, ICICT 2024, 2025, 1055 : 483 - 494
  • [39] Key Feature Repairing Based on Self-Supervised for Remote Sensing Semantic Segmentation
    Wang, Hengyou
    Li, Xiao
    Huo, Lian-Zhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [40] Tree Species Classification Based on Self-Supervised Learning with Multisource Remote Sensing Images
    Wang, Xueliang
    Yang, Nan
    Liu, Enjun
    Gu, Wencheng
    Zhang, Jinglin
    Zhao, Shuo
    Sun, Guijiang
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2023, 13 (03):