Cross-platform gene expression profiling of breast cancer: Exploring the relationship between breast cancer grades and gene expression pattern

被引:2
|
作者
Sarhadi, Shamim
Armani, Arta [1 ]
Jafari-Gharabaghlou, Davoud [2 ]
Sadeghi, Somayeh [3 ]
Zarghami, Nosratollah [2 ,4 ,5 ]
机构
[1] Tech Univ Munich, Inst Clin Chem & Pathobiochem, Sch Med, Klinikum Rechts Isar, Munich, Germany
[2] Istanbul Aydin Univ, Fac Med, Dept Med Biol & Genet, Istanbul, Turkiye
[3] Tabriz Univ Med Sci, Fac Med, Dept Clin Biochem & Lab Med, Tabriz, Iran
[4] Tabriz Univ Med Sci, Fac Med, Dept Immunol, Tabriz, Iran
[5] Istanbul Aydin Univ, Fac Med, Dept Med Biochem, Istanbul, Turkiye
关键词
Gene expression profiling; Transcriptome; Grade classification; Systems biology; SET ENRICHMENT ANALYSIS; CLASSIFICATION; NETWORKANALYST; METAANALYSIS;
D O I
10.1016/j.heliyon.2024.e29736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression profiling is a powerful tool that has been extensively used to investigate the underlying biology and etiology of diseases, including cancer. Microarray gene expression analysis enables simultaneous measurement of thousands of mRNA levels. Sophisticated computational approaches have evolved in parallel with the rapid progress in bioassay technologies, enabling more effective analysis of the large and complex datasets that these technologies produce. In this study, we utilized systems biology approaches to examine gene expression profiles across different grades of breast cancer progression. We conducted a meta-analysis of publicly available microarray data to elucidate the molecular mechanisms underlying breast cancer grade classification. Our results suggest that while grade index is commonly used for evaluating cancer progression status in the clinic, the complexity of molecular mechanisms, histological characteristics, and other factors related to patient outcomes raises doubts about the utility of breast cancer grades as a foundation for formulating treatment protocols. Our study underscores the importance of advancing personalized strategies for breast cancer classification and management. More research is crucial to refine diagnostic tools and treatment modalities, aiming for greater precision and tailored care in patient outcomes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Prognostic Applications of Gene Expression Signatures in Breast Cancer
    Normanno, Nicola
    De Luca, Antonella
    Carotenuto, Pietro
    Lamura, Luana
    Oliva, Ilaria
    D'Alessio, Amelia
    ONCOLOGY, 2009, 77 : 2 - 8
  • [32] Cross-platform comparison of immune-related gene expression to assess intratumor immune responses following cancer immunotherapy
    Zhang, Li
    Cham, Jason
    Cooley, James
    He, Tao
    Hagihara, Katsunobu
    Yang, Hai
    Fan, Frances
    Cheung, Alexander
    Thompson, Debrah
    Kerns, B. J.
    Fong, Lawrence
    JOURNAL OF IMMUNOLOGICAL METHODS, 2021, 494
  • [33] Predicting features of breast cancer with gene expression patterns
    Lu, Xuesong
    Lu, Xin
    Wang, Zhigang C.
    Iglehart, J. Dirk
    Zhang, Xuegong
    Richardson, Andrea L.
    BREAST CANCER RESEARCH AND TREATMENT, 2008, 108 (02) : 191 - 201
  • [34] Predicting features of breast cancer with gene expression patterns
    Xuesong Lu
    Xin Lu
    Zhigang C. Wang
    J. Dirk Iglehart
    Xuegong Zhang
    Andrea L. Richardson
    Breast Cancer Research and Treatment, 2008, 108
  • [35] Gene Expression of Kallikreins in Breast Cancer Cell Lines
    Watrowski, Rafal
    Castillo-Tong, Dan Cacsire
    Obermayr, Eva
    Zeillinger, Robert
    ANTICANCER RESEARCH, 2020, 40 (05) : 2487 - 2495
  • [36] Gene expression profiling in colon cancer
    Barrier, Alain
    Boelle, Pierre-Yves
    Lemoine, Antoinette
    Flahault, Antoine
    Dudoit, Sandrine
    Huguier, Michel
    BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE, 2007, 191 (06): : 1091 - 1101
  • [37] Gene expression signatures: A tool for analysis of breast cancer prognosis and therapy
    Latha, Neetha Rajan
    Rajan, Arathi
    Nadhan, Revathy
    Achyutuni, Sarada
    Sengodan, Satheesh Kumar
    Hemalatha, Sreelatha Krishnakumar
    Varghese, Geetu Rose
    Thankappan, Ratheeshkumar
    Krishnan, Neethu
    Patra, Dipyaman
    Warrier, Arathy
    Srinivas, Priya
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2020, 151
  • [38] The present and future of gene profiling in breast cancer
    E. Espinosa
    A. Gámez-Pozo
    I. Sánchez-Navarro
    A. Pinto
    C. A. Castañeda
    E. Ciruelos
    J. Feliu
    J. A. Fresno Vara
    Cancer and Metastasis Reviews, 2012, 31 : 41 - 46
  • [39] The present and future of gene profiling in breast cancer
    Espinosa, E.
    Gamez-Pozo, A.
    Sanchez-Navarro, I.
    Pinto, A.
    Castaneda, C. A.
    Ciruelos, E.
    Feliu, J.
    Fresno Vara, J. A.
    CANCER AND METASTASIS REVIEWS, 2012, 31 (1-2) : 41 - 46
  • [40] Empirical comparison of cross-platform normalization methods for gene expression data
    Rudy, Jason
    Valafar, Faramarz
    BMC BIOINFORMATICS, 2011, 12