βGemigliptin mitigates TGF-(3-induced renal fibrosis through FGF21-mediated inhibition of the TGF-β/Smad3 signaling pathway

被引:0
|
作者
Byun, Jun-Kyu [1 ]
Jung, Gwon-Soo [2 ]
机构
[1] Kyungpook Natl Univ, Res Inst Pharmaceut Sci, Coll Pharm, Daegu 41566, South Korea
[2] Daegu Gyeongbuk Med Innovat Fdn, New Drug Dev Ctr, Daegu 41061, South Korea
基金
新加坡国家研究基金会;
关键词
FGF21; Gemigliptin; TGF-(3; Smad3; Renal fibrosis; HK-2; GROWTH-FACTOR; 21; TGF-BETA; FGF21;
D O I
10.1016/j.bbrc.2024.150425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroblast growth factor 21 (FGF21), a well-known regulator of metabolic disorders, exhibits the potential to prevent renal fibrosis by negatively regulating the transforming growth factor (3 (TGF-(3)/Smad3 signaling pathway. Gemigliptin and other dipeptidyl peptidase-4 inhibitors are frequently used for the management of patients with type 2 diabetes. However, the protective effect of gemigliptin against renal fibrosis, particularly its potential to upregulate the expression of FGF21, remains incompletely understood. This study assessed the renoprotective effects of gemigliptin against TGF-(3-induced renal fibrosis by enhancing the expression of FGF21 in the cultured human proximal tubular epithelial cell line HK-2. Treatment with FGF21 effectively prevented TGF-(3-induced renal fibrosis by attenuating the TGF-(3/Smad3 signaling pathway. Similarly, gemigliptin exhibited protective effects against TGF-(3-induced renal fibrosis by mitigating TGF-(3/Smad3 signaling through the upregulation of FGF21 expression. However, the protective effects of gemigliptin were blocked when FGF21 expression was knocked down in TGF-(3-treated HK-2 cells. These results indicate that gemegliptin has the potential to exhibit protective effects against TGF-(3-induced renal fibrosis by elevating FGF21 expression levels in cultured human proximal tubular epithelial cells.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling
    Lee, Bitnara
    Oh, Younseo
    Jo, Sungsin
    Kim, Tae-Hwan
    Ji, Jong Dae
    IMMUNOLOGY LETTERS, 2019, 206 : 33 - 40
  • [32] ADAMTS13 attenuates renal fibrosis by suppressing thrombospondin 1 mediated TGF-β1/Smad3 activation
    Guo, Jie
    Zhou, Suhan
    Wang, Honghong
    Qiu, Xingyu
    Dong, Fang
    Jiang, Shan
    Xu, Nan
    Cui, Yu
    Liu, Ruisheng
    Li, Pengyun
    Ma, Zufu
    Zhao, Liang
    Lai, En Yin
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2025, 496
  • [33] NLRC5 silencing improves cardiac fibrosis by regulation of TGF-β1/Smad3 signaling pathway
    Huang, Mingjian
    Pan, Chaoxin
    He, Xinbing
    Wang, Qinggao
    Wu, Wanli
    Yang, Qinghua
    Zhang, Zhenqian
    Wen, Zhihao
    Liang, Yiqiang
    Luo, Jinwei
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (11): : 12059 - +
  • [34] Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-β/Smad3-mediated signaling
    Goto, D
    Nakajima, H
    Mori, Y
    Kurasawa, K
    Kitamura, N
    Iwamoto, I
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 281 (05) : 1100 - 1105
  • [35] Smad2 Protects against TGF-β/Smad3-Mediated Renal Fibrosis
    Meng, Xiao Ming
    Huang, Xiao Ru
    Chung, Arthur C. K.
    Qin, Wei
    Shao, Xinli
    Igarashi, Peter
    Ju, Wenjun
    Bottinger, Erwin P.
    Lan, Hui Yao
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2010, 21 (09): : 1477 - 1487
  • [36] NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway
    Zhibo Jin
    Chaohui Gu
    Fengyan Tian
    Zhankui Jia
    Jinjian Yang
    Cell and Tissue Research, 2017, 369 : 603 - 610
  • [37] Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway
    Dou, Fang
    Ding, Yi
    Wang, Cheng
    Duan, Jialin
    Wang, Wenjun
    Xu, Hang
    Zhao, Xian
    Wang, Jingwen
    Wen, Aidong
    BIOCHEMICAL PHARMACOLOGY, 2020, 180
  • [38] Capsaicin ameliorates renal fibrosis by inhibiting TGF-β1-Smad2/3 signaling
    Liu, Zhenyu
    Wang, Weili
    Li, Xueqin
    Tang, Sha
    Meng, Dongwei
    Xia, Wenli
    Wang, Hong
    Wu, Yuzhang
    Zhou, Xinyuan
    Zhang, Jingbo
    PHYTOMEDICINE, 2022, 100
  • [39] Buyang Huanwu Decoction protects against STZ-induced diabetic nephropathy by inhibiting TGF-β/Smad3 signaling-mediated renal fibrosis and inflammation
    Wu, Weifeng
    Wang, Yifan
    Li, Haidi
    Chen, Haiyong
    Shen, Jiangang
    CHINESE MEDICINE, 2021, 16 (01)
  • [40] You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-β/Smad signaling pathway
    Wang, Li
    Cao, Ai-li
    Chi, Yang-Feng
    Ju, Zheng-Cai
    Yin, Pei-Hao
    Zhang, Xue-Mei
    Peng, Wen
    JOURNAL OF ETHNOPHARMACOLOGY, 2015, 169 : 229 - 238