Single-image super-resolution reconstruction based on phase-aware visual multi-layer perceptron (MLP)

被引:0
|
作者
Shi, Changteng [1 ]
Li, Mengjun [1 ]
An, Zhiyong [1 ]
机构
[1] Shandong Technol & Business Univ, Yantai, Peoples R China
关键词
Super-resolution reconstruction; MLP; Deep learning;
D O I
10.7717/peerj-cs.2208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many advanced super-resolution reconstruction methods have been proposed recently, but they often require high computational and memory resources, making them incompatible with low-power devices in reality. To address this problem, we propose a simple yet efficient super-resolution reconstruction method using waveform representation and multi-layer perceptron (MLP) for image processing. Firstly, we partition the original image and its down-sampled version into multiple patches and introduce WaveBlock to process these patches. WaveBlock represents patches as waveform functions with amplitude and phase and extracts representative feature representations by dynamically adjusting phase terms between tokens and fixed weights. Next, we fuse the extracted features through a feature fusion block and finally reconstruct the image using sub-pixel convolution. Extensive experimental results demonstrate that SRWave-MLP performs excellently in both quantitative evaluation metrics and visual quality while having significantly fewer parameters than state-of-the-art efficient superresolution methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Single-image super-resolution reconstruction based on phase-aware visual multi-layer perceptron (MLP)
    Shi, Changteng
    Li, Mengjun
    An, Zhiyong
    PeerJ Computer Science, 2024, 10
  • [2] PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION
    Wang, Guangcheng
    Li, Leida
    Li, Qiaohong
    Gu, Ke
    Lu, Zhaolin
    Qian, Jiansheng
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3145 - 3149
  • [3] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [4] Single-image super-resolution reconstruction via generative adversarial network
    Ju, Chunwu
    Su, Xiuqin
    Yang, Haoyuan
    Ning, Hailong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [5] Single-Image Super-Resolution Reconstruction Based on Improved Attention in A2N
    Cao, Hualiang
    Wei, Zhuang
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (02)
  • [6] Investigation into Perceptual-Aware Optimization for Single-Image Super-Resolution in Embedded Systems
    Vu, Khanh Hung
    Nguyen, Duc Phuc
    Nguyen, Duc Dung
    Pham, Hoang-Anh
    ELECTRONICS, 2023, 12 (11)
  • [7] A Single Image Super-Resolution Reconstruction Based on Fusion
    Su Jin-sheng
    Zhang Ming-jun
    Yu Wen-jing
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [8] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)
  • [9] Single-image super-resolution reconstruction for continuous-wave terahertz imaging systems
    Wang H.
    Lang L.
    Pang Y.
    Zhang L.
    Zheng W.
    Xi S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (01):
  • [10] Gradient-aware based single image super-resolution
    Zhou Le
    Xu Long
    Liu Xiao-yan
    Zhang Xin-ze
    Zhang Xuan-de
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (10) : 1334 - 1344