Weak/stable solutions to p-Kirchhoff equation: Only-zero or non-existence

被引:0
作者
Li, Weiyang [1 ,2 ]
Sun, Yuhua [1 ,2 ]
Xiao, Jie [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Mem Univ, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
LIOUVILLE-TYPE THEOREMS; SEMILINEAR ELLIPTIC-EQUATIONS; MORSE INDEX SOLUTIONS; STABLE-SOLUTIONS; POSITIVE SOLUTIONS; DELTA-U; CLASSIFICATION; BEHAVIOR; E(U);
D O I
10.1063/5.0215319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper figures out some natural conditions for a weak/stable solution of the p-Kirchhoff equation -a+b & Vert;del u & Vert;(p)(p)Delta(p)u(x)=f(alpha)(|x|)g(u(x)), x is an element of R-N, to be either only-zero or non-existent.
引用
收藏
页数:19
相关论文
共 31 条
[1]  
[Anonymous], 2006, Fractional Cauchy Transforms, Chapman and Hall
[3]  
Brezis H., 1997, Revista Mat. Univ. Complutense Madrid, V10, P443
[4]   Stable solutions to semilinear elliptic equations are smooth up to dimension 9 [J].
Cabre, Xavier ;
Ros-Oton, Xavier ;
Figalli, Alessio ;
Serra, Joaquim .
ACTA MATHEMATICA, 2020, 224 (02) :187-252
[5]   A NEW PROOF OF THE BOUNDEDNESS RESULTS FOR STABLE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS [J].
Cabre, Xavier .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (12) :7249-7264
[6]   Boundedness of Stable Solutions to Semilinear Elliptic Equations: A Survey [J].
Cabre, Xavier .
ADVANCED NONLINEAR STUDIES, 2017, 17 (02) :355-368
[7]   Finite Morse index solutions of supercritical problems [J].
Dancer, E. N. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 :213-233
[8]   Finite Morse index solutions of exponential problems [J].
Dancer, E. N. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (01) :173-179
[9]   Supercritical finite Morse index solutions [J].
Dancer, E. N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (01) :268-269
[10]   Finite Morse index solutions of an elliptic equation with supercritical exponent [J].
Dancer, E. N. ;
Du, Yihong ;
Guo, Zongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3281-3310