On Removable Singularities of Harmonic Functions on a Stratified Set

被引:0
|
作者
Dairbekov, N. S. [1 ,2 ]
Penkin, O. M. [1 ,3 ]
Savasteev, D. V. [3 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] SDU Univ, Kaskelen, Kazakhstan
[3] Voronezh State Univ, Voronezh, Russia
关键词
stratified measure; soft Laplacian; mean value; Harnack inequality; EQUATIONS;
D O I
10.1134/S1064562424601379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider sets removable for bounded harmonic functions on a stratified set with flat interior strata. It is proved that relatively closed sets of finite Hausdorff \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n - 2)$$\end{document}-measure are removable for bounded harmonic functions on an n-dimensional stratified set satisfying the strong sturdiness condition.
引用
收藏
页码:297 / 300
页数:4
相关论文
共 50 条