SFDet: spatial to frequency attention for small-object detection in underwater images

被引:0
作者
Chen, Dazhi [1 ]
Gou, Gang [1 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
underwater image; object detection; small-object detection; deep learning;
D O I
10.1117/1.JEI.33.2.023057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Small-object detection presents a formidable challenge in object detection. While object detectors leveraging convolutional neural networks have shown remarkable advancements, the downsampling of images in current detectors results in the loss of spatial domain information. Addressing this issue, we propose SFDet, a small-object detection method that employs an attention mechanism shifting from the spatial to the frequency domain, specifically optimized for small-object detection in underwater images. Specifically, our approach incorporates a fusion mechanism that combines image enhancement networks for semantic enhancement and extracts a composite representation of spatial and frequency domain components to enhance small-object detection accuracy. We evaluate our proposed approach on four publicly available datasets, and the results demonstrate its superior performance compared with other methods. The code is available at: https://github.com/fadaishaitaiyang/SFDet.git
引用
收藏
页数:13
相关论文
共 55 条
  • [31] FCOS: Fully Convolutional One-Stage Object Detection
    Tian, Zhi
    Shen, Chunhua
    Chen, Hao
    He, Tong
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9626 - 9635
  • [32] Focal Loss for Dense Object Detection
    Lin, Tsung-Yi
    Goyal, Priya
    Girshick, Ross
    He, Kaiming
    Dollar, Piotr
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2999 - 3007
  • [33] Van Etten A, 2018, Arxiv, DOI arXiv:1805.09512
  • [34] Vu T., 2019, ADV NEUR IN, V32
  • [35] Wang ZY, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1072
  • [36] Self-Supervised Pre-Training Joint Framework: Assisting Lightweight Detection Network for Underwater Object Detection
    Wang, Zhuo
    Chen, Haojie
    Qin, Hongde
    Chen, Qin
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [37] Wu Y, 2020, PROC CVPR IEEE, P10183, DOI 10.1109/CVPR42600.2020.01020
  • [38] DOTA: A Large-scale Dataset for Object Detection in Aerial Images
    Xia, Gui-Song
    Bai, Xiang
    Ding, Jian
    Zhu, Zhen
    Belongie, Serge
    Luo, Jiebo
    Datcu, Mihai
    Pelillo, Marcello
    Zhang, Liangpei
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3974 - 3983
  • [39] Oriented R-CNN for Object Detection
    Xie, Xingxing
    Cheng, Gong
    Wang, Jiabao
    Yao, Xiwen
    Han, Junwei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3500 - 3509
  • [40] Yang G, 2023, arXiv