SFDet: spatial to frequency attention for small-object detection in underwater images

被引:0
作者
Chen, Dazhi [1 ]
Gou, Gang [1 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
underwater image; object detection; small-object detection; deep learning;
D O I
10.1117/1.JEI.33.2.023057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Small-object detection presents a formidable challenge in object detection. While object detectors leveraging convolutional neural networks have shown remarkable advancements, the downsampling of images in current detectors results in the loss of spatial domain information. Addressing this issue, we propose SFDet, a small-object detection method that employs an attention mechanism shifting from the spatial to the frequency domain, specifically optimized for small-object detection in underwater images. Specifically, our approach incorporates a fusion mechanism that combines image enhancement networks for semantic enhancement and extracts a composite representation of spatial and frequency domain components to enhance small-object detection accuracy. We evaluate our proposed approach on four publicly available datasets, and the results demonstrate its superior performance compared with other methods. The code is available at: https://github.com/fadaishaitaiyang/SFDet.git
引用
收藏
页数:13
相关论文
共 55 条
  • [1] MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake Detection
    Agarwal, Aayushi
    Agarwal, Akshay
    Sinha, Sayan
    Vatsa, Mayank
    Singh, Richa
    [J]. 2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [2] DISCRETE COSINE TRANSFORM
    AHMED, N
    NATARAJAN, T
    RAO, KR
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (01) : 90 - 93
  • [3] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [4] Cao YH, 2020, PROC CVPR IEEE, P11580, DOI 10.1109/CVPR42600.2020.01160
  • [5] Chen K, 2019, Arxiv, DOI [arXiv:1906.07155, DOI 10.48550/ARXIV.1906.07155]
  • [6] Underwater object detection using Invert Multi-Class Adaboost with deep learning
    Chen, Long
    Liu, Zhihua
    Tong, Lei
    Jiang, Zheheng
    Wang, Shengke
    Dong, Junyu
    Zhou, Huiyu
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [7] Learning RoI Transformer for Oriented Object Detection in Aerial Images
    Ding, Jian
    Xue, Nan
    Long, Yang
    Xia, Gui-Song
    Lu, Qikai
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2844 - 2853
  • [8] Learning Heavily-Degraded Prior for Underwater Object Detection
    Fu, Chenping
    Fan, Xin
    Xiao, Jiewen
    Yuan, Wanqi
    Liu, Risheng
    Luo, Zhongxuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 6887 - 6896
  • [9] Align Deep Features for Oriented Object Detection
    Han, Jiaming
    Ding, Jian
    Li, Jie
    Xia, Gui-Song
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Heithaus MR, 2002, ECOLOGY, V83, P480, DOI 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO