Generating adversarial examples for DNN using pooling layers

被引:1
作者
Zhang, Yueling [1 ]
Pu, Geguang [1 ]
Zhang, Min [1 ]
Yang, William [2 ]
机构
[1] East China Normal Univ, Comp Sci & Software Engn Inst, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
Deep neural network; robustness; coverage; big data; DEEP NEURAL-NETWORKS; GAME; GO;
D O I
10.3233/JIFS-179295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Neural Network is an application of Big Data, and the robustness of Big Data is one of the most important issues. This paper proposes a newapproach named PCD for computing adversarial examples for Deep Neural Network (DNN) and increase the robustness of Big Data. In safety-critical applications, adversarial examples are big threats to the reliability of DNNs. PCD generates adversarial examples by generating different coverage of pooling functions using gradient ascent. Among the 2707 input images, PCD generates 672 adversarial examples with L-infinity distances less than 0.3. Comparing to PGD (state-of-art tool for generating adversarial examples with distances less than 0.3), PCD finds 1.5 times more adversarial examples than PGD (449) does.
引用
收藏
页码:4615 / 4620
页数:6
相关论文
共 27 条
[1]  
[Anonymous], 2018, ARXIV PREPRINT ARXIV
[2]  
[Anonymous], 2017, ARXIV170608605
[3]  
[Anonymous], 2018, ARXIV180410829
[4]   Detecting cyber-physical threats in an autonomous robotic vehicle using Bayesian Networks [J].
Bezemskij, Anatolij ;
Loukas, George ;
Gan, Diane ;
Anthony, Richard J. .
2017 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2017, :98-103
[5]   Towards Evaluating the Robustness of Neural Networks [J].
Carlini, Nicholas ;
Wagner, David .
2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, :39-57
[6]  
Elsayed GF, 2018, ADV NEUR IN, V31
[7]  
He K., 2015, P IEEE C COMPUTER VI, DOI DOI 10.1109/CVPR.2016.90
[8]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97
[9]  
Huang W., 2018, DIMVA, P399
[10]   Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [J].
Katz, Guy ;
Barrett, Clark ;
Dill, David L. ;
Julian, Kyle ;
Kochenderfer, Mykel J. .
COMPUTER AIDED VERIFICATION, CAV 2017, PT I, 2017, 10426 :97-117