Stability of Solutions to the Logistic Equation with Delay, Diffusion, and Nonclassical Boundary Conditions

被引:0
作者
Kashchenko, I. S. [1 ]
Kashchenko, S. A. [1 ]
Maslenikov, I. N. [1 ]
机构
[1] Yaroslavl State Univ, Reg Sci & Educ Math Ctr, Demidov Yaroslavl State Univ, Yaroslavl, Russia
基金
俄罗斯科学基金会;
关键词
logistic equation; delay; diffusion; nonclassical boundary conditions; stability;
D O I
10.1134/S1064562424702132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The logistic equation with delay and diffusion and with nonclassical boundary conditions is studied. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 10 条
[1]  
Cushing JM., 1977, INTEGRODIFFERENTIAL, DOI DOI 10.1007/978-3-642-93073-7
[2]  
Gourley S., 2004, J MATH SCI N Y, V124, P5119, DOI [DOI 10.1023/B:JOTH.0000047249.39572.6D, 10.1023/B:JOTH.0000047249.39572.6d]
[3]   Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition [J].
Kashchenko, S. A. ;
Tolbey, A. O. .
MATHEMATICAL NOTES, 2023, 113 (5-6) :869-873
[4]   Bifurcations Due to the Variation of Boundary Conditions in the Logistic Equation with Delay and Diffusion [J].
Kashchenko, S. A. ;
Loginov, D. O. .
MATHEMATICAL NOTES, 2019, 106 (1-2) :136-141
[5]  
Kashchenko S.A., 2020, Dynamics of models based on the logistic equation with delay
[6]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[7]  
Murray J., 2001, MATH BIOL
[8]   THEORETICAL FUNDAMENTALS OF THE METHOD FOR THERMAL-DIFFUSIVITY MEASUREMENTS FROM AUTOOSCILLATION PARAMETERS IN A SYSTEM WITH A THERMAL FEEDBACK [J].
RUDYI, AS .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1993, 14 (01) :159-172
[9]  
Wright E.M., 1955, J REINE ANGEW MATH, V1955, P66, DOI DOI 10.1515/CRLL.1955.194.66
[10]  
Wu J., 1996, THEORY APPL PARTIAL, DOI [10.1007/978-1-4612-4050-1, DOI 10.1007/978-1-4612-4050-1]