EKFNet: Learning System Noise Covariance Parameters for Nonlinear Tracking

被引:1
作者
Xu, Liang [1 ]
Niu, Ruixin [2 ]
机构
[1] Motional Inc, Boston, MA 02210 USA
[2] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
关键词
Noise; Loss measurement; Noise measurement; Kalman filters; Covariance matrices; Time measurement; Mathematical models; EKF; fine-tuning; recurrent neural network; machine learning; backpropagation through time; ALGORITHM;
D O I
10.1109/TSP.2024.3417350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, to reduce the time and manpower to fine-tune an extended Kalman filter (EKF), we propose a new learning framework, EKFNet, for automatically estimating the best process and measurement noise covariance parameters for an EKF from real measurement data. The EKFNet is trained end-to-end by using backpropagation through time (BPTT) over the EKF. The forward operation of EKFNet is the same as the normal EKF operation which will be used during the tracking process. During the offline training, the EKFNet uses the BPTT for passing the gradient flow to each time step and optimizing the unknown noise statistic parameters. The proposed method can choose among several optimization criteria, such as maximizing the likelihood, minimizing the measurement residual error, or minimizing the posterior state estimation error either with or without the ground truth data. The proposed method's performance is demonstrated using real GPS data, which outperforms an existing method and a manually tuned EKF.
引用
收藏
页码:3139 / 3152
页数:14
相关论文
共 49 条
  • [1] Abbeel P., 2005, P ROB SCI SYST, V1
  • [2] Real time egomotion of a nonholonomic vehicle using LIDAR measurements
    Almeida, J.
    Santos, V. M.
    [J]. JOURNAL OF FIELD ROBOTICS, 2013, 30 (01) : 129 - 141
  • [3] Asmar Dylan., 2012, Tech. Rep.
  • [4] Bar-Shalom Y., 2004, Estimation with Appli-cations to Tracking and Navigation: Theory Algorithms and Software
  • [5] Bar-Shalom Y., 2011, Tracking and Data Fusion
  • [6] Barratt ST, 2020, P AMER CONTR CONF, P1526, DOI [10.23919/ACC45564.2020.9147485, 10.23919/acc45564.2020.9147485]
  • [7] Chen ZZ, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P1072, DOI 10.23919/ICIF.2018.8454982
  • [8] Corenflos A., 2021, INT C MACHINE LEARNI, P2100
  • [9] Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization
    Coskun, Huseyin
    Achilles, Felix
    DiPietro, Robert
    Navab, Nassir
    Tombari, Federico
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5525 - 5533
  • [10] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237