Surface Reconstruction of Perovskites with Organosilanes for High Performance and Highly Stable Solar Cells

被引:1
作者
Soliman, Ahmed I. A. [1 ,2 ]
Zhang, Yiqing [1 ]
Zhang, Lin [1 ]
Wu, Haotian [1 ,3 ]
Shan, Shiqi [1 ]
Zhou, Yu [1 ]
Xu, Chang [1 ]
Fu, Weifei [1 ,3 ]
Chen, Hongzheng [1 ,3 ]
机构
[1] Zhejiang Univ, Int Res Ctr X Polymers, Dept Polymer Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Assiut Univ, Fac Sci, Chem Dept, Assiut 71516, Egypt
[3] Zhejiang Univ, Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
organosilane; perovskite solar cells; self-assembled monolayers; surface reconstruction; EFFICIENT; STABILITY;
D O I
10.1002/adfm.202412886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface or interface engineering is one of the most effective strategies to improve the device performance and stability of perovskite solar cells (PSCs), owing to the fact that the defects are mainly located at the surface. Organosilanes are among the most promising surface modifiers due to their unique cross-linking ability, which makes a robust layer to further protect the underneath perovskites. However, the influence of tail functional groups of organosilanes on the device performance and stability has never been systematically investigated. Herein, a series of organosilanes with different chain lengths, fluorination, and different interactions toward perovskite are applied to modify the perovskite. Tail functional groups that show passivation ability toward perovskite are demonstrated to effectively reduce trap densities and thus improve the power conversion efficiencies (PCEs), while the fluorinated functional groups are beneficial for high stability. Finally, PSCs based on 3,3,3-trifluoropropyltrimethoxysilane (FPTMS) modification showed a high PCE of 23.0% with the best operational stability. The encapsulated device maintained 85% of the initial PCE after 1725 h under continuous 1 sun equivalent illumination in air. The work may provide important insights into designing modifiers for high-performance PSCs with high stability. A series of organosilanes with different tail functional groups are applied to modify the perovskite. Finally, perovskite solar cells with 3,3,3-trifluoropropyltrimethoxysilane (FPTMS) modification showed a power conversion efficiency (PCE) of 23.0% and the encapsulated device maintained 85% of the initial PCE after 1725 h under continuous 1 sun equivalent illumination in air. image
引用
收藏
页数:8
相关论文
共 45 条
[21]   Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J].
Saliba, Michael ;
Matsui, Taisuke ;
Seo, Ji-Youn ;
Domanski, Konrad ;
Correa-Baena, Juan-Pablo ;
Nazeeruddin, Mohammad Khaja ;
Zakeeruddin, Shaik M. ;
Tress, Wolfgang ;
Abate, Antonio ;
Hagfeldt, Anders ;
Gratzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :1989-1997
[22]   (3-Aminopropyl)trimethoxysilane Surface Passivation Improves Perovskite Solar Cell Performance by Reducing Surface Recombination Velocity [J].
Shi, Yangwei ;
Rojas-Gatjens, Esteban ;
Wang, Jian ;
Pothoof, Justin ;
Giridharagopal, Rajiv ;
Ho, Kevin ;
Jiang, Fangyuan ;
Taddei, Margherita ;
Yang, Zhaoqing ;
Sanehira, Erin M. ;
Irwin, Michael D. ;
Silva-Acuna, Carlos ;
Ginger, David S. .
ACS ENERGY LETTERS, 2022, 7 (11) :4081-4088
[23]   High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J].
Tsai, Hsinhan ;
Nie, Wanyi ;
Blancon, Jean-Christophe ;
Toumpos, Constantinos C. S. ;
Asadpour, Reza ;
Harutyunyan, Boris ;
Neukirch, Amanda J. ;
Verduzco, Rafael ;
Crochet, Jared J. ;
Tretiak, Sergei ;
Pedesseau, Laurent ;
Even, Jacky ;
Alam, Muhammad A. ;
Gupta, Gautam ;
Lou, Jun ;
Ajayan, Pulickel M. ;
Bedzyk, Michael J. ;
Kanatzidis, Mercouri G. ;
Mohite, Aditya D. .
NATURE, 2016, 536 (7616) :312-+
[24]   Robust Molecular Dipole-Enabled Defect Passivation and Control of Energy-Level Alignment for High-Efficiency Perovskite Solar Cells [J].
Wang, Bing ;
Li, Hong ;
Dai, Qingqing ;
Zhang, Meng ;
Zou, Zhigang ;
Bredas, Jean-Luc ;
Lin, Zhiqun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (32) :17664-17670
[25]   Defects engineering for high-performance perovskite solar cells [J].
Wang, Feng ;
Bai, Sai ;
Tress, Wolfgang ;
Hagfeldt, Anders ;
Gao, Feng .
NPJ FLEXIBLE ELECTRONICS, 2018, 2 (01)
[26]   Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells [J].
Wang, Ge ;
Wang, Chen ;
Gao, Yajun ;
Wen, Shanpeng ;
MacKenzie, Roderick C. I. ;
Guo, Liuxing ;
Dong, Wei ;
Ruan, Shengping .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 :55-61
[27]   Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells [J].
Wang, Qi ;
Dong, Qingfeng ;
Li, Tao ;
Gruverman, Alexei ;
Huang, Jinsong .
ADVANCED MATERIALS, 2016, 28 (31) :6734-+
[28]   Application of Carbonene Materials for Artificial Muscles [J].
Wen, Yeye ;
Ren, Ming ;
Di, Jiangtao ;
Zhang, Jin .
ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (09)
[29]   Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells [J].
Wolff, Christian M. ;
Canil, Laura ;
Rehermann, Carolin ;
Nguyen Ngoc Linh ;
Zu, Fengshuo ;
Ralaiarisoa, Maryline ;
Caprioglio, Pietro ;
Fiedler, Lukas ;
Stolterfoht, Martin ;
Kogikoski, Sergio, Jr. ;
Bald, Ilko ;
Koch, Norbert ;
Unger, Eva L. ;
Dittrich, Thomas ;
Abate, Antonio ;
Neher, Dieter .
ACS NANO, 2020, 14 (02) :1445-1456
[30]   Polypropylene Glycol-Modified Anode Interface for High-Performance Perovskite Solar Cells† [J].
Wu, Fei ;
Yan, Kangrong ;
Wu, Haotian ;
Guo, Yuanhang ;
Shan, Shiqi ;
Chen, Tianyi ;
Fu, Weifei ;
Zuo, Lijian ;
Chen, Hongzheng .
CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (22) :2694-2700