Surface Reconstruction of Perovskites with Organosilanes for High Performance and Highly Stable Solar Cells

被引:1
作者
Soliman, Ahmed I. A. [1 ,2 ]
Zhang, Yiqing [1 ]
Zhang, Lin [1 ]
Wu, Haotian [1 ,3 ]
Shan, Shiqi [1 ]
Zhou, Yu [1 ]
Xu, Chang [1 ]
Fu, Weifei [1 ,3 ]
Chen, Hongzheng [1 ,3 ]
机构
[1] Zhejiang Univ, Int Res Ctr X Polymers, Dept Polymer Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Assiut Univ, Fac Sci, Chem Dept, Assiut 71516, Egypt
[3] Zhejiang Univ, Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
organosilane; perovskite solar cells; self-assembled monolayers; surface reconstruction; EFFICIENT; STABILITY;
D O I
10.1002/adfm.202412886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface or interface engineering is one of the most effective strategies to improve the device performance and stability of perovskite solar cells (PSCs), owing to the fact that the defects are mainly located at the surface. Organosilanes are among the most promising surface modifiers due to their unique cross-linking ability, which makes a robust layer to further protect the underneath perovskites. However, the influence of tail functional groups of organosilanes on the device performance and stability has never been systematically investigated. Herein, a series of organosilanes with different chain lengths, fluorination, and different interactions toward perovskite are applied to modify the perovskite. Tail functional groups that show passivation ability toward perovskite are demonstrated to effectively reduce trap densities and thus improve the power conversion efficiencies (PCEs), while the fluorinated functional groups are beneficial for high stability. Finally, PSCs based on 3,3,3-trifluoropropyltrimethoxysilane (FPTMS) modification showed a high PCE of 23.0% with the best operational stability. The encapsulated device maintained 85% of the initial PCE after 1725 h under continuous 1 sun equivalent illumination in air. The work may provide important insights into designing modifiers for high-performance PSCs with high stability. A series of organosilanes with different tail functional groups are applied to modify the perovskite. Finally, perovskite solar cells with 3,3,3-trifluoropropyltrimethoxysilane (FPTMS) modification showed a power conversion efficiency (PCE) of 23.0% and the encapsulated device maintained 85% of the initial PCE after 1725 h under continuous 1 sun equivalent illumination in air. image
引用
收藏
页数:8
相关论文
共 45 条
[1]   A Multifunctional Dye Molecule as the Interfacial Layer for Perovskite Solar Cells [J].
Chen J. ;
Zhang X. ;
Liu X. ;
Li B. ;
Han M. ;
Han S. ;
Han Y. ;
Liu J. ;
Dai W. ;
Ghadari R. ;
Dai S. .
ACS Applied Materials and Interfaces, 2024, 16 (17) :22079-22088
[2]   Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile Mechanical Approach [J].
Chen, Shangshang ;
Liu, Ye ;
Xiao, Xun ;
Yu, Zhenhua ;
Deng, Yehao ;
Dai, Xuezeng ;
Ni, Zhenyi ;
Huang, Jinsong .
JOULE, 2020, 4 (12) :2661-2674
[3]   Thermal and Chemical Stability of n-Hexadecanethiol Monolayers on Au(111) in O2 Environments [J].
Cometto, Fernando P. ;
Ruano, Gustavo ;
Soria, Federico A. ;
Andrea Calderon, C. ;
Paredes-Olivera, Patricia A. ;
Zampieri, Guillermo ;
Martin Patrito, E. .
ELECTROCHIMICA ACTA, 2016, 215 :313-325
[4]   Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations [J].
Duong, The ;
Pham, Huyen ;
Yin, Yanting ;
Peng, Jun ;
Mahmud, Md Arafat ;
Wu, YiLiang ;
Shen, Heping ;
Zheng, Jianghui ;
Tran-Phu, Thanh ;
Lu, Teng ;
Li, Li ;
Kumar, Anand ;
Andersson, Gunther G. ;
Ho-Baillie, Anita ;
Liu, Yun ;
White, Thomas ;
Weber, Klaus ;
Catchpole, Kylie .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (34) :18454-18465
[5]   Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications [J].
Fang, Hong-Hua ;
Wang, Feng ;
Adjokatse, Sampson ;
Zhao, Ni ;
Even, Jacky ;
Loi, Maria Antonietta .
LIGHT-SCIENCE & APPLICATIONS, 2016, 5 :e16056-e16056
[6]   Stability of perovskite materials and devices [J].
Fu, Weifei ;
Ricciardulli, Antonio Gaetano ;
Akkerman, Quinten A. ;
John, Rohit Abraham ;
Tavakoli, Mohammad Mahdi ;
Essig, Stephanie ;
Kovalenko, Maksym V. ;
Saliba, Michael .
MATERIALS TODAY, 2022, 58 :275-296
[7]   Controlled crystallization of CH3NH3PbI3 filmS for perovskite solar cells by various PbI2(X) complexes [J].
Fu, Weifei ;
Yan, Jielin ;
Zhang, Zhongqiang ;
Ye, Tao ;
Liu, Yujing ;
Wu, Jiake ;
Yao, Jizhong ;
Li, Chang-Zhi ;
Li, Hanying ;
Chen, Hongzheng .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 :331-340
[8]   Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates [J].
Gu, Zhuowei ;
Zuo, Lijian ;
Larsen-Olsen, Thue T. ;
Ye, Tao ;
Wu, Gang ;
Krebs, Frederik C. ;
Chen, Hongzheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) :24254-24260
[9]   Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters [J].
Guo, Yuwei ;
Apergi, Sofia ;
Li, Nan ;
Chen, Mengyu ;
Yin, Chunyang ;
Yuan, Zhongcheng ;
Gao, Feng ;
Xie, Fangyan ;
Brocks, Geert ;
Tao, Shuxia ;
Zhao, Ni .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Molecular engineering of contact interfaces for high-performance perovskite solar cells [J].
Isikgor, Furkan H. ;
Zhumagali, Shynggys ;
Merino, Luis V. T. ;
De Bastiani, Michele ;
McCulloch, Iain ;
De Wolf, Stefaan .
NATURE REVIEWS MATERIALS, 2023, 8 (02) :89-108