A Sulfide-Based Solid Electrolyte With High Humid Air Tolerance for Long Lifespan All-Solid-State Sodium Batteries

被引:0
|
作者
Guo, Yayu [1 ]
Liu, Kai [1 ]
Li, Cheng [2 ]
Song, Dawei [1 ]
Zhang, Hongzhou [1 ]
Wang, Zhenyu [3 ]
Yan, Yufen [1 ]
Zhang, Lianqi [1 ]
Dai, Sheng [4 ,5 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37830 USA
[3] Guilin Elect Equipment Sci Res Inst Co Ltd, Guilin 541004, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
基金
中国国家自然科学基金;
关键词
all-solid-state sodium batteries; humid air tolerance; interface stability; sulfide-based electrolytes; vacancy and configurational entropy; SUPERIONIC CONDUCTOR; IONIC-CONDUCTIVITY; NA3SBS4; ENERGY;
D O I
10.1002/aenm.202401504
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based superionic conductors present great promise to achieve high energy density and safety for all-solid-state sodium batteries (ASSSBs). However, the poor electrolyte/electrode interface compatibility and humid air stability seriously hinder their deployment in ASSSBs. Herein, a series of high-performance Na3-square Sb1-4x(SnWCaTi)xS4 sulfide-based solid electrolytes (SSEs) are reported by coupling the vacancy effect with configurational entropy, which displays an excellent interface stability against sodium metal and an extraordinary tolerance toward the moist atmosphere, even for water. The optimized electrolyte effectively inhibits the detrimental mixed ion-electron conducting interphase formation, achieving the ultra-stable operation of Na-Na symmetric cell up to 1000 h. Furthermore, the Na+ diffusion kinetics is obviously enhanced by increasing the Na sites local anisotropy and Na vacancies. Eventually, the assembled TiS2//Na5Sn ASSSBs deliver a remarkable reversible capacity of 211.6 mAh g-1 at 0.5C with a long-term cycling performance of 450 cycles at room temperature. More importantly, it achieves a steady running up to 100 cycles at 1C even if this electrolyte is placed in the air with a dew temperature of 13.8 degrees C for 30 min, the highest values in the state-of-the-art sulfide-based ASSSBs. The well-designed SSEs open a new avenue for realizing the advanced and powerful ASSSBs. In this work, a humid air stability sulfide-based solid electrolyte for all-solid-state sodium batteries (ASSSBs) with excellent electrochemical performance is synthesized by coupling the vacancy effect with the configurational entropy strategy. The assembled TiS2//Na5Sn ASSSBs deliver remarkable long-term cycling performance and achieve a stable operation under different exposure time in a humid atmosphere with a dew temperature of 13.8 degrees C. image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Halide/sulfide composite solid-state electrolyte for Li-anode based all-solid-state batteries
    Zhang, Haochang
    Yu, Zhaozhe
    Cheng, Jinyin
    Chen, Hannan
    Huang, Xiao
    Tian, Bingbing
    CHINESE CHEMICAL LETTERS, 2023, 34 (11)
  • [22] Fluorinated solid electrolyte interphase enables interfacial stability for sulfide-based solid-state sodium metal batteries
    Hu, Xiaoyu
    Wang, Minkang
    Liu, Yu
    Meng, Xianhe
    Zhong, Yu
    Wang, Xiuli
    Tu, Jiangping
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [23] Research progress of inorganic solid electrolyte materials for all-solid-state sodium-ion batteries
    Li, Xiao-Shan
    Liang, Jin
    Cao, Xin
    Zhu, Si-Ying
    Bai, Yun-Fang
    Sun, Jia-Wen
    Luo, He-Bin
    Kong, Jie
    RARE METALS, 2025, : 2871 - 2899
  • [24] Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries
    Tsukasaki, Hirofumi
    Otoyama, Misae
    Mori, Yota
    Mori, Shigeo
    Morimoto, Hideyuki
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    JOURNAL OF POWER SOURCES, 2017, 367 : 42 - 48
  • [25] Operando investigation of sulfide-based all-solid-state lithium batteries via Raman spectroscopy: A review
    Yuan, Chaohui
    Qin, Linlin
    Xu, Ge
    Zhang, Hengbin
    Wang, Bin
    Xu, Jun
    Li, Jinpeng
    Zeng, Jinsong
    Gao, Wenhua
    Cao, Daxian
    Chen, Kefu
    ENERGY STORAGE MATERIALS, 2025, 76
  • [26] Progress and Challenges for All-Solid-State Sodium Batteries
    Yang, Hui-Ling
    Zhang, Bin-Wei
    Konstantinov, Konstantin
    Wang, Yun-Xiao
    Liu, Hua-Kun
    Dou, Shi-Xue
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (02):
  • [27] Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
    Lian, Peng-Jie
    Zhao, Bo-Sheng
    Zhang, Lian-Qi
    Xu, Ning
    Wu, Meng-Tao
    Gao, Xue-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20540 - 20557
  • [28] Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film
    Yi, Jingguang
    Zhou, Dan
    Liang, Yuhao
    Liu, Hong
    Ni, Haifang
    Fan, Li-Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 17 - 24
  • [29] Engineering, Understanding, and Optimizing Electrolyte/Anode Interfaces for All-Solid-State Sodium Batteries
    Tang, Wenhao
    Qi, Ruiyu
    Wu, Jiamin
    Zuo, Yinze
    Shi, Yiliang
    Liu, Ruiping
    Yan, Wei
    Zhang, Jiujun
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [30] Zirconia-free NaSICON solid electrolyte materials for sodium all-solid-state batteries
    Tieu, Aaron Jue Kang
    Mahayoni, Eunike
    Li, Yuheng
    Deng, Zeyu
    Fauth, Francois
    Chotard, Jean-Noel
    Seznec, Vincent
    Adams, Stefan
    Masquelier, Christian
    Canepa, Pieremanuele
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (43) : 23233 - 23242