A Sulfide-Based Solid Electrolyte With High Humid Air Tolerance for Long Lifespan All-Solid-State Sodium Batteries

被引:0
|
作者
Guo, Yayu [1 ]
Liu, Kai [1 ]
Li, Cheng [2 ]
Song, Dawei [1 ]
Zhang, Hongzhou [1 ]
Wang, Zhenyu [3 ]
Yan, Yufen [1 ]
Zhang, Lianqi [1 ]
Dai, Sheng [4 ,5 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37830 USA
[3] Guilin Elect Equipment Sci Res Inst Co Ltd, Guilin 541004, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
基金
中国国家自然科学基金;
关键词
all-solid-state sodium batteries; humid air tolerance; interface stability; sulfide-based electrolytes; vacancy and configurational entropy; SUPERIONIC CONDUCTOR; IONIC-CONDUCTIVITY; NA3SBS4; ENERGY;
D O I
10.1002/aenm.202401504
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based superionic conductors present great promise to achieve high energy density and safety for all-solid-state sodium batteries (ASSSBs). However, the poor electrolyte/electrode interface compatibility and humid air stability seriously hinder their deployment in ASSSBs. Herein, a series of high-performance Na3-square Sb1-4x(SnWCaTi)xS4 sulfide-based solid electrolytes (SSEs) are reported by coupling the vacancy effect with configurational entropy, which displays an excellent interface stability against sodium metal and an extraordinary tolerance toward the moist atmosphere, even for water. The optimized electrolyte effectively inhibits the detrimental mixed ion-electron conducting interphase formation, achieving the ultra-stable operation of Na-Na symmetric cell up to 1000 h. Furthermore, the Na+ diffusion kinetics is obviously enhanced by increasing the Na sites local anisotropy and Na vacancies. Eventually, the assembled TiS2//Na5Sn ASSSBs deliver a remarkable reversible capacity of 211.6 mAh g-1 at 0.5C with a long-term cycling performance of 450 cycles at room temperature. More importantly, it achieves a steady running up to 100 cycles at 1C even if this electrolyte is placed in the air with a dew temperature of 13.8 degrees C for 30 min, the highest values in the state-of-the-art sulfide-based ASSSBs. The well-designed SSEs open a new avenue for realizing the advanced and powerful ASSSBs. In this work, a humid air stability sulfide-based solid electrolyte for all-solid-state sodium batteries (ASSSBs) with excellent electrochemical performance is synthesized by coupling the vacancy effect with the configurational entropy strategy. The assembled TiS2//Na5Sn ASSSBs deliver remarkable long-term cycling performance and achieve a stable operation under different exposure time in a humid atmosphere with a dew temperature of 13.8 degrees C. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries
    Zhang, Qing
    Cao, Daxian
    Ma, Yi
    Natan, Avi
    Aurora, Peter
    Zhu, Hongli
    ADVANCED MATERIALS, 2019, 31 (44)
  • [2] A high-performance organic cathode customized for sulfide-based all-solid-state batteries
    Ji, Weixiao
    Zhang, Xiaoxiao
    Xin, Le
    Luedtke, Avery
    Zheng, Dong
    Huang, He
    Lambert, Tristan
    Qu, Deyang
    ENERGY STORAGE MATERIALS, 2022, 45 : 680 - 686
  • [3] Challenges and opportunities of practical sulfide-based all-solid-state batteries
    Ren, Dongsheng
    Lu, Languang
    Hua, Rui
    Zhu, Gaolong
    Liu, Xiang
    Mao, Yuqiong
    Rui, Xinyu
    Wang, Shan
    Zhao, Bosheng
    Cui, Hao
    Yang, Min
    Shen, Haorui
    Zhao, Chen-Zi
    Wang, Li
    He, Xiangming
    Liu, Saiyue
    Hou, Yukun
    Tan, Tiening
    Wang, Pengbo
    Nitta, Yoshiaki
    Ouyang, Minggao
    ETRANSPORTATION, 2023, 18
  • [4] Cathodic interface in sulfide-based all-solid-state lithium batteries
    Li, Nana
    Luo, Jiayao
    Zhu, Jinhui
    Zhuang, Xiaodong
    ENERGY STORAGE MATERIALS, 2023, 63
  • [5] Design of composite cathodes for sulfide-based all-solid-state batteries
    Jiang, Wei
    Zhu, Xinxin
    Liu, Yawen
    Zhao, Shu
    Ling, Min
    Wang, Liguang
    Liang, Chengdu
    ETRANSPORTATION, 2023, 17
  • [6] Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries
    Oh, Jihoon
    Choi, Seung Ho
    Chang, Barsa
    Lee, Jieun
    Lee, Taegeun
    Lee, Nohjoon
    Kim, Hyuntae
    Kim, Yunsung
    Im, Gahyeon
    Lee, Sangheon
    Choi, Jang Wook
    ACS ENERGY LETTERS, 2022, 7 (04) : 1374 - 1382
  • [7] Hard Carbon-Sulfide Solid Electrolyte Interface in All-Solid-State Sodium Batteries
    Yoshida, Wataru
    Nasu, Akira
    Motohashi, Kota
    Tatsumisago, Masahiro
    Sakuda, Atsushi
    Hayashi, Akitoshi
    ELECTROCHEMISTRY, 2023, 91 (03)
  • [8] Inducing interfacial progress based on a new sulfide-based composite electrolyte for all-solid-state lithium batteries
    Zhang, Hui
    Li, Xiaohe
    Hao, Shimeng
    Zhang, Xian
    Lin, Junpin
    ELECTROCHIMICA ACTA, 2019, 325
  • [9] High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries
    Shen, L.
    Yang, J.
    Liu, G.
    Avdeev, M.
    Yao, X.
    MATERIALS TODAY ENERGY, 2021, 20
  • [10] Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes
    Yang, Zhendong
    Tang, Bin
    Ren, Dehang
    Yu, Xinyu
    Gao, Yirong
    Wu, Yifan
    Yang, Yongan
    Chen, Zhongfang
    Zhou, Zhen
    MATERIALS TODAY, 2024, 80 : 429 - 449