Genome-wide association studies (GWAS) have emerged as popular tools for identifying genetic variants that are associated with complex diseases. Standard analysis of a GWAS involves assessing the association between each variant and a disease. However, this approach suffers from limited reproducibility and difficulties in detecting multi-variant and pleiotropic effects. Although joint analysis of multiple phenotypes for GWAS can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits, most of the multiple phenotype association tests are designed for a single variant, resulting in much lower power, especially when their effect sizes are small and only their cumulative effect is associated with multiple phenotypes. To overcome these limitations, set-based multiple phenotype association tests have been developed to enhance statistical power and facilitate the identification and interpretation of pleiotropic regions. In this research, we propose a new method, named Meta-TOW-S, which conducts joint association tests between multiple phenotypes and a set of variants (such as variants in a gene) utilizing GWAS summary statistics from different cohorts. Our approach applies the set-based method that Tests for the effect of an Optimal Weighted combination of variants in a gene (TOW) and accounts for sample size differences across GWAS cohorts by employing the Cauchy combination method. Meta-TOW-S combines the advantages of set-based tests and multi-phenotype association tests, exhibiting computational efficiency and enabling analysis across multiple phenotypes while accommodating overlapping samples from different GWAS cohorts. To assess the performance of Meta-TOW-S, we develop a phenotype simulator package that encompasses a comprehensive simulation scheme capable of modeling multiple phenotypes and multiple variants, including noise structures and diverse correlation patterns among phenotypes. Simulation studies validate that Meta-TOW-S maintains a desirable Type I error rate. Further simulation under different scenarios shows that Meta-TOW-S can improve power compared with other existing meta-analysis methods. When applied to four psychiatric disorders summary data, Meta-TOW-S detects a greater number of significant genes.
机构:
Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, CanadaUniv Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
Zhao, Yanyan
Sun, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON M5T 3M7, CanadaUniv Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
Sun, Lei
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2021,
49
(03):
: 754
-
770
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Dutta, Diptavo
Taliun, Sarah A. Gagliano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Taliun, Sarah A. Gagliano
Weinstock, Joshua S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Weinstock, Joshua S.
Zawistowski, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Zawistowski, Matthew
Sidore, Carlo
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Ric Genet &Biomed, Cagliari, ItalyUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Sidore, Carlo
Fritsche, Lars G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Fritsche, Lars G.
Cucca, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Ric Genet &Biomed, Cagliari, Italy
Univ Sassari, Dipartimento Sci Biomed, Sassari, ItalyUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Cucca, Francesco
Schlessinger, David
论文数: 0引用数: 0
h-index: 0
机构:
NIH, Lab Genet, US NIH, Baltimore, MD USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Schlessinger, David
Abecasis, Goncalo R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Abecasis, Goncalo R.
Brummett, Chad M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Anesthesiol, Div Pain Med, Med Sch, Ann Arbor, MI 48109 USA
Univ Michigan, Inst Healthcare Policy & Innovat, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Brummett, Chad M.
Lee, Seunggeun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
Univ Michigan, Sch Publ Hlth, Ctr Stat Genet, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, 1420 Washington Hts, Ann Arbor, MI 48109 USA
机构:
Heilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R China
Wei, Qianran
Chen, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Heilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R China
Chen, Lili
Zhou, Yajing
论文数: 0引用数: 0
h-index: 0
机构:
Heilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R China
Zhou, Yajing
Wang, Huiyi
论文数: 0引用数: 0
h-index: 0
机构:
Heilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Dept Stat, Harbin 150080, Peoples R China