Mitochondrial membrane potential and oxidative stress interact to regulate Oma1-dependent processing of Opa1 and mitochondrial dynamics

被引:4
|
作者
Fogo, Garrett M. [1 ]
Raghunayakula, Sarita [2 ]
Emaus, Katlynn J. [1 ]
Torres, Francisco J. Torres [1 ]
Wider, Joseph M. [1 ,2 ,3 ]
Sanderson, Thomas H. [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Neurosci Grad Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI USA
[3] Univ Michigan, Max Harry Weil Inst Crit Care Res & Innovat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI USA
来源
FASEB JOURNAL | 2024年 / 38卷 / 18期
基金
美国国家卫生研究院;
关键词
membrane fusion; membrane potential; mitochondria; mitochondrial dynamics; proteostasis; reactive oxygen species; PROTEASE OMA1; CALCIUM; ACTIVATION; LONG; DEPOLARIZATION; ISOFORMS; RELEASE; FUSION; YME1L;
D O I
10.1096/fj.202400313R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial form and function are regulated by the opposing forces of mitochondrial dynamics: fission and fusion. Mitochondrial dynamics are highly active and consequential during neuronal ischemia/reperfusion (I/R) injury. Mitochondrial fusion is executed at the mitochondrial inner membrane by Opa1. The balance of long (L-Opa1) and proteolytically cleaved short (S-Opa1) isoforms is critical for efficient fusion. Oma1 is the predominant stress-responsive protease for Opa1 processing. In neuronal cell models, we assessed Oma1 and Opa1 regulation during mitochondrial stress. In an immortalized mouse hippocampal neuron line (HT22), Oma1 was sensitive to mitochondrial membrane potential depolarization (rotenone, FCCP) and hyperpolarization (oligomycin). Further, oxidative stress was sufficient to increase Oma1 activity and necessary for depolarization-induced proteolysis. We generated Oma1 knockout (KO) HT22 cells that displayed normal mitochondrial morphology and fusion capabilities. FCCP-induced mitochondrial fragmentation was exacerbated in Oma1 KO cells. However, Oma1 KO cells were better equipped to perform restorative fusion after fragmentation, presumably due to preserved L-Opa1. We extended our investigations to a combinatorial stress of neuronal oxygen-glucose deprivation and reoxygenation (OGD/R), where we found that Opa1 processing and Oma1 activation were initiated during OGD in an ROS-dependent manner. These findings highlight a novel dependence of Oma1 on oxidative stress in response to depolarization. Further, we demonstrate contrasting fission/fusion roles for Oma1 in the acute response and recovery stages of mitochondrial stress. Collectively, our results add intersectionality and nuance to the previously proposed models of Oma1 activity. The mitochondrial inner membrane protease Oma1 acts to proteolytically cleave the inner membrane fusion protein Opa1 from long (L-Opa1) to short (S-Opa1) isoforms, with downstream consequences on mitochondrial dynamics. Oma1 is activated by depolarization and hyperpolarization of the mitochondrial membrane potential (Delta Psi). This activation is demonstrated to be dependent on the production of reactive oxygen species during depolarization and neuron ischemia/reperfusion injury (I/R).image
引用
收藏
页数:14
相关论文
共 50 条
  • [41] OPA1 IN MULTIPLE MITOCHONDRIAL DNA DELETION DISORDERS
    Stewart, J. D.
    Hudson, G.
    Yu-Wai-Man, P.
    Blakeley, E. L.
    He, L.
    Horvath, R.
    Maddison, P.
    Wright, A.
    Griffiths, P. G.
    Turnbull, D. M.
    Taylor, R. W.
    Chinnery, P. F.
    NEUROLOGY, 2008, 71 (22) : 1829 - U159
  • [42] Mitochondrial retention of Opa1 is required for mouse embryogenesis
    Moore, Billie A.
    Aviles, Gladys D. Gonzalez
    Larkins, Christine E.
    Hillman, Michael J.
    Caspary, Tamara
    MAMMALIAN GENOME, 2010, 21 (7-8) : 350 - 360
  • [43] Long OPA1 isoforms mediate a membrane potential-dependent threshold for mitochondrial fusion in AC16 cardiomyocytes
    Gilkerson, Robert
    Maynard, Kristen
    De La Torre, Patrick
    Keniry, Megan
    FASEB JOURNAL, 2020, 34
  • [44] Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion
    Ban, Tadato
    Kohno, Hiroto
    Ishihara, Takaya
    Ishihara, Naotada
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2018, 1859 (09): : 951 - 957
  • [45] OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions
    Del Dotto, Valentina
    Mishra, Prashant
    Vidoni, Sara
    Fogazza, Mario
    Maresca, Alessandra
    Caporali, Leonardo
    McCaffery, J. Michael
    Cappelletti, Martina
    Baruffini, Enrico
    Lenaers, Guy
    Chan, David
    Rugolo, Michela
    Carelli, Valerio
    Zanna, Claudia
    CELL REPORTS, 2017, 19 (12): : 2557 - 2571
  • [46] OPA1 and cardiolipin team up for mitochondrial fusion
    Liu, Raymond
    Chan, David C.
    NATURE CELL BIOLOGY, 2017, 19 (07) : 760 - 762
  • [47] Oxidation of the mitochondrial fusion protein OPA1 in the heart
    Semenzato, M.
    Frezza, C.
    Carpi, A.
    Dilisa, F.
    Scorrano, L.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2008, 44 (04) : 785 - 785
  • [48] Mitochondrial nucleoid dynamics perturbation by OPA1 disease-causing mutants
    Eisner, Veronica
    Macuada, Josefa
    Vidal, Gonzalo
    Aedo, Geraldine
    Cartes-Saavedra, Benjamin
    Rudge, Timothy
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 5 - 5
  • [49] Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria
    Korwitz, Anne
    Merkwirth, Carsten
    Richter-Dennerlein, Ricarda
    Troeder, Simon E.
    Sprenger, Hans-Georg
    Quiros, Pedro M.
    Lopez-Otin, Carlos
    Rugarli, Elena I.
    Langer, Thomas
    JOURNAL OF CELL BIOLOGY, 2016, 212 (02): : 157 - 166
  • [50] Mitochondrial disorder with OPA1 mutation and no optic atrophy
    Milone, M.
    Younge, B.
    Wang, J.
    Zhang, S.
    Wong, L-J.
    EUROPEAN JOURNAL OF NEUROLOGY, 2009, 16 : 204 - 204