Mitochondrial membrane potential and oxidative stress interact to regulate Oma1-dependent processing of Opa1 and mitochondrial dynamics

被引:4
|
作者
Fogo, Garrett M. [1 ]
Raghunayakula, Sarita [2 ]
Emaus, Katlynn J. [1 ]
Torres, Francisco J. Torres [1 ]
Wider, Joseph M. [1 ,2 ,3 ]
Sanderson, Thomas H. [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Neurosci Grad Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI USA
[3] Univ Michigan, Max Harry Weil Inst Crit Care Res & Innovat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI USA
来源
FASEB JOURNAL | 2024年 / 38卷 / 18期
基金
美国国家卫生研究院;
关键词
membrane fusion; membrane potential; mitochondria; mitochondrial dynamics; proteostasis; reactive oxygen species; PROTEASE OMA1; CALCIUM; ACTIVATION; LONG; DEPOLARIZATION; ISOFORMS; RELEASE; FUSION; YME1L;
D O I
10.1096/fj.202400313R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial form and function are regulated by the opposing forces of mitochondrial dynamics: fission and fusion. Mitochondrial dynamics are highly active and consequential during neuronal ischemia/reperfusion (I/R) injury. Mitochondrial fusion is executed at the mitochondrial inner membrane by Opa1. The balance of long (L-Opa1) and proteolytically cleaved short (S-Opa1) isoforms is critical for efficient fusion. Oma1 is the predominant stress-responsive protease for Opa1 processing. In neuronal cell models, we assessed Oma1 and Opa1 regulation during mitochondrial stress. In an immortalized mouse hippocampal neuron line (HT22), Oma1 was sensitive to mitochondrial membrane potential depolarization (rotenone, FCCP) and hyperpolarization (oligomycin). Further, oxidative stress was sufficient to increase Oma1 activity and necessary for depolarization-induced proteolysis. We generated Oma1 knockout (KO) HT22 cells that displayed normal mitochondrial morphology and fusion capabilities. FCCP-induced mitochondrial fragmentation was exacerbated in Oma1 KO cells. However, Oma1 KO cells were better equipped to perform restorative fusion after fragmentation, presumably due to preserved L-Opa1. We extended our investigations to a combinatorial stress of neuronal oxygen-glucose deprivation and reoxygenation (OGD/R), where we found that Opa1 processing and Oma1 activation were initiated during OGD in an ROS-dependent manner. These findings highlight a novel dependence of Oma1 on oxidative stress in response to depolarization. Further, we demonstrate contrasting fission/fusion roles for Oma1 in the acute response and recovery stages of mitochondrial stress. Collectively, our results add intersectionality and nuance to the previously proposed models of Oma1 activity. The mitochondrial inner membrane protease Oma1 acts to proteolytically cleave the inner membrane fusion protein Opa1 from long (L-Opa1) to short (S-Opa1) isoforms, with downstream consequences on mitochondrial dynamics. Oma1 is activated by depolarization and hyperpolarization of the mitochondrial membrane potential (Delta Psi). This activation is demonstrated to be dependent on the production of reactive oxygen species during depolarization and neuron ischemia/reperfusion injury (I/R).image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Investigating the proteolytic processing of mitochondrial fusion protein OPA1
    McMahon, Kate
    Griggs, Chloe
    Fishovitz, Jennifer
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [22] Release of mitochondrial Opa1 following oxidative stress in HT22 cells
    Sanderson, Thomas H.
    Raghunayakula, Santa
    Kumar, Rita
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2015, 64 : 116 - 122
  • [23] Structural mechanism of mitochondrial membrane remodelling by human OPA1
    Alexander von der Malsburg
    Gracie M. Sapp
    Kelly E. Zuccaro
    Alexander von Appen
    Frank R. Moss
    Raghav Kalia
    Jeremy A. Bennett
    Luciano A. Abriata
    Matteo Dal Peraro
    Martin van der Laan
    Adam Frost
    Halil Aydin
    Nature, 2023, 620 : 1101 - 1108
  • [24] Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1
    Yamaguchi, Ryuji
    Perkins, Guy
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (08): : 963 - 972
  • [25] OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle
    Noone, John
    O'Gorman, Donal J.
    Kenny, Helena C.
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2022, 33 (10): : 710 - 721
  • [27] Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization
    Moepert, Kristin
    Hajek, Petr
    Frank, Stephan
    Chen, Christiane
    Kaufmann, Joerg
    Santel, Ansgar
    EXPERIMENTAL CELL RESEARCH, 2009, 315 (13) : 2165 - 2180
  • [28] Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice
    Quiros, Pedro M.
    Ramsay, Andrew J.
    Sala, David
    Fernandez-Vizarra, Erika
    Rodriguez, Francisco
    Peinado, Juan R.
    Soledad Fernandez-Garcia, Maria
    Vega, Jose A.
    Enriquez, Jose A.
    Zorzano, Antonio
    Lopez-Otin, Carlos
    EMBO JOURNAL, 2012, 31 (09): : 2117 - 2133
  • [29] Standardized mitochondrial analysis gives new insights into mitochondrial dynamics and OPA1 function
    Chevrollier, Arnaud
    Cassereau, Julien
    Ferre, Marc
    Alban, Jennifer
    Desquiret-Dumas, Valerie
    Gueguen, Naig
    Amati-Bonneau, Patrizia
    Procaccio, Vincent
    Bonneau, Dominique
    Reynier, Pascal
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2012, 44 (06): : 980 - 988
  • [30] Differentiation activates mitochondrial OPA1 processing in myoblast cell lines
    Kaur, Harpreet
    Carrillo, Omar
    Garcia, Iraselia
    Ramos, Isaiah
    St Vallier, Shaynah
    de la Torre, Patrick
    Lopez, Alma
    Keniry, Megan
    Bazan, Daniel
    Elizondo, Jorge
    Grishma, K. C.
    MacMillan-Crow, Lee Ann
    Gilkerson, Robert
    MITOCHONDRION, 2024, 78