Mathematical Morphology on Directional Data

被引:0
|
作者
Hauch, Konstantin [1 ]
Redenbach, Claudia [1 ]
机构
[1] RPTU Kaiserslautern Landau, Dept Math, Gottlieb-Daimler-Str, D-67663 Kaiserslautern, Germany
关键词
Depth function; mu CT imaging; Image processing; Filtering; Glass foam; Glass fibre reinforced polymer; DATA DEPTH; OPERATORS;
D O I
10.1007/s10851-024-01210-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define morphological operators and filters for directional images whose pixel values are unit vectors. This requires an ordering relation for unit vectors which is obtained by using depth functions. They provide a centre-outward ordering with respect to a specified centre vector. We apply our operators on synthetic directional images and compare them with classical morphological operators for grey-scale images. As application examples, we enhance the fault region in a compressed glass foam and segment misaligned fibre regions of glass fibre-reinforced polymers.
引用
收藏
页码:1019 / 1032
页数:14
相关论文
共 50 条
  • [1] Mathematical morphology on directional data
    Hauch, Konstantin
    Redenbach, Claudia
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [2] An Improved Edge Detection Algorithm Based on Mathematical Morphology and Directional Wavelet Transform
    Zhang, Weiguo
    Shi, Dan
    Yang, Xiaoqiang
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 335 - 339
  • [3] Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification
    Sigurosson, Eysteinn Mar
    Valero, Silvia
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Talbot, Hugues
    Stefansson, Einar
    PATTERN RECOGNITION LETTERS, 2014, 47 : 164 - 171
  • [4] Mathematical morphology directly applied to point cloud data
    Balado, Jesus
    van Oosterom, Peter
    Diaz-Vilarino, Lucia
    Meijers, Martijn
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 168 : 208 - 220
  • [5] Automated identification of endmembers from hyperspectral data using mathematical morphology
    Plaza, A
    Martínez, P
    Gualtieri, JA
    Pérez, RM
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 278 - 287
  • [6] Airborne LiDAR Data Filtering Based on Geodesic Transformations of Mathematical Morphology
    Li, Yong
    Yong, Bin
    van Oosterom, Peter
    Lemmens, Mathias
    Wu, Huayi
    Ren, Liliang
    Zheng, Mingxue
    Zhou, Jiajun
    REMOTE SENSING, 2017, 9 (11):
  • [7] Hypercomplex Mathematical Morphology
    Angulo, Jesus
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 41 (1-2) : 86 - 108
  • [8] Image analysis and mathematical morphology for civil engineering materials
    Coster, M
    Chermant, JL
    CEMENT & CONCRETE COMPOSITES, 2001, 23 (2-3) : 133 - 151
  • [9] Mathematical Morphology for Vector Images Using Statistical Depth
    Velasco-Forero, Santiago
    Angulo, Jesus
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, (ISMM 2011), 2011, 6671 : 355 - 366
  • [10] General sweep mathematical morphology
    Shih, FY
    Gaddipati, V
    PATTERN RECOGNITION, 2003, 36 (07) : 1489 - 1500