Nonlinear Memory Term for Fractional Diffusion Equation

被引:0
作者
Ayad, Abderrahmane [1 ]
Djaouti, Abdelhamid Mohammed [2 ]
Benmeriem, Khaled [1 ]
机构
[1] Univ Mascara, Fac Exact Sci, Dept Math, Mascara, Algeria
[2] King Faisal Univ Hofuf, Fac Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
关键词
Nonlinear waves; Riemann-Liouville integral operator; Global in time existence; Power nonlinearity; Small data; GLOBAL EXISTENCE; WAVE-EQUATIONS; BLOW-UP; SPACE;
D O I
10.1007/s44198-024-00236-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the Cauchy problem described by the following equation: partial derivative t lambda+1 phi-Delta phi=integral 0t(t-s)-gamma phi(s,.)pds,phi(0,x)=phi 0(x),phi t(0,x)=phi 1(x).(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _{t}<^>{\lambda +1}\phi -\Delta \phi =\int _{0}<^>{t}(t-s)<^>{- \gamma } \left| \phi (s,.) \right| <^>{p}ds,\quad \phi (0,x)=\phi _{0}(x),\quad \phi _{t}(0,x)=\phi _{1}(x). \quad \mathrm{(1)} \end{aligned}$$\end{document}The equation involves the Caputo fractional derivative in time, denoted as partial derivative t lambda+1 phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{t}<^>{\lambda +1}\phi$$\end{document}. Additionally, The nonlinear term is determined by the memory term integral 0t(t-s)-gamma phi(s,.)pds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}<^>{t}(t-s)<^>{- \gamma } \left| \phi (s,.) \right| <^>{p}ds$$\end{document}, where gamma is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1)$$\end{document}. Using the fixed point theorem, we establish the global existence of solutions to the Cauchy problem (1) for small initial data. We also investigate the impact of the nonlinearity parameter on the range of the exponent p and the estimation of the solutions.
引用
收藏
页数:15
相关论文
共 50 条
[1]   The critical exponent for a time fractional diffusion equation with nonlinear memory [J].
Zhang, Quanguo ;
Li, Yaning .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6443-6456
[2]   ON THE CRITICAL EXPONENTS FOR A FRACTIONAL DIFFUSION-WAVE EQUATION WITH A NONLINEAR MEMORY TERM IN A BOUNDED DOMAIN [J].
Zhang, Quan-Guo .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) :455-480
[3]   The critical exponents for a time fractional diffusion equation with nonlinear memory in a bounded domain [J].
Zhang, Quanguo ;
Li, Yaning .
APPLIED MATHEMATICS LETTERS, 2019, 92 :1-7
[4]   On the Blow-Up of Solutions for a Fractional Diffusion Equation with Nonlinear Memory and Reaction Terms in a Bounded Domain [J].
Zhang, Quanguo .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
[5]   On the Blow-Up of Solutions for a Fractional Diffusion Equation with Nonlinear Memory and Reaction Terms in a Bounded Domain [J].
Quanguo Zhang .
Mediterranean Journal of Mathematics, 2023, 20
[6]   A structurally damped σ-evolution equation with nonlinear memory [J].
D'Abbicco, Marcello ;
Girardi, Giovanni .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) :10872-10890
[7]   Local Well-posedness of Nonlinear Time-fractional Diffusion Equation [J].
Suechoei, Apassara ;
Ngiamsunthorn, Parinya Sa .
THAI JOURNAL OF MATHEMATICS, 2021, 19 (03) :865-884
[8]   A degenerate diffusion equation with a nonlinear source term [J].
Wiegner, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1977-1995
[9]   Quenching for a reaction-diffusion equation with nonlinear memory [J].
Zhou, Shouming ;
Mu, Chunlai ;
Du, Qingling ;
Zeng, Rong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :754-763
[10]   Existence of solutions to a nonlinear fractional diffusion equation with exponential growth [J].
He, Jia Wei ;
Zhou, Yong ;
Alsaedi, Ahmed ;
Ahmad, Bashir .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (02) :286-304