Nonlinear Memory Term for Fractional Diffusion Equation

被引:0
|
作者
Ayad, Abderrahmane [1 ]
Djaouti, Abdelhamid Mohammed [2 ]
Benmeriem, Khaled [1 ]
机构
[1] Univ Mascara, Fac Exact Sci, Dept Math, Mascara, Algeria
[2] King Faisal Univ Hofuf, Fac Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
关键词
Nonlinear waves; Riemann-Liouville integral operator; Global in time existence; Power nonlinearity; Small data; GLOBAL EXISTENCE; WAVE-EQUATIONS; BLOW-UP; SPACE;
D O I
10.1007/s44198-024-00236-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the Cauchy problem described by the following equation: partial derivative t lambda+1 phi-Delta phi=integral 0t(t-s)-gamma phi(s,.)pds,phi(0,x)=phi 0(x),phi t(0,x)=phi 1(x).(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _{t}<^>{\lambda +1}\phi -\Delta \phi =\int _{0}<^>{t}(t-s)<^>{- \gamma } \left| \phi (s,.) \right| <^>{p}ds,\quad \phi (0,x)=\phi _{0}(x),\quad \phi _{t}(0,x)=\phi _{1}(x). \quad \mathrm{(1)} \end{aligned}$$\end{document}The equation involves the Caputo fractional derivative in time, denoted as partial derivative t lambda+1 phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{t}<^>{\lambda +1}\phi$$\end{document}. Additionally, The nonlinear term is determined by the memory term integral 0t(t-s)-gamma phi(s,.)pds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}<^>{t}(t-s)<^>{- \gamma } \left| \phi (s,.) \right| <^>{p}ds$$\end{document}, where gamma is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1)$$\end{document}. Using the fixed point theorem, we establish the global existence of solutions to the Cauchy problem (1) for small initial data. We also investigate the impact of the nonlinearity parameter on the range of the exponent p and the estimation of the solutions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON THE CRITICAL EXPONENTS FOR A FRACTIONAL DIFFUSION-WAVE EQUATION WITH A NONLINEAR MEMORY TERM IN A BOUNDED DOMAIN
    Zhang, Quan-Guo
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 455 - 480
  • [2] The critical exponent for a time fractional diffusion equation with nonlinear memory
    Zhang, Quanguo
    Li, Yaning
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6443 - 6456
  • [3] On Fractional Diffusion Equation with Caputo-Fabrizio Derivative and Memory Term
    Binh Duy Ho
    Van Kim Ho Thi
    Long Le Dinh
    Nguyen Hoang Luc
    Phuong Nguyen
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [4] Solution of the nonlinear fractional diffusion equation with absorbent term and external force
    Das, S.
    Vishal, K.
    Gupta, P. K.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 3970 - 3979
  • [5] Solutions for a fractional nonlinear diffusion equation with external force and absorbent term
    Lenzi, E. K.
    Lenzi, M. K.
    Evangelista, L. R.
    Malacarne, L. C.
    Mendes, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [6] A Nonlinear Fractional Model of Diffusion Equation
    Draganescu, Gheorghe Eugen
    Bereteu, Liviu
    Stanescu, Dan Viorel
    Rujan, Dan
    PHYSICS CONFERENCE (TIM-10), 2011, 1387
  • [7] WELL-POSEDNESS RESULTS FOR NONLINEAR FRACTIONAL DIFFUSION EQUATION WITH MEMORY QUANTITY
    Tuan, Nguyen Huy
    Nguyen, Anh Tuan
    Debbouche, Amar
    Antonov, Valery
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2815 - 2838
  • [8] The critical exponents for a time fractional diffusion equation with nonlinear memory in a bounded domain
    Zhang, Quanguo
    Li, Yaning
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 1 - 7
  • [9] A fractional diffusion equation with sink term
    dos Santos, M. A. F.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (07) : 1123 - 1133
  • [10] A fractional diffusion equation with sink term
    M. A. F. dos Santos
    Indian Journal of Physics, 2020, 94 : 1123 - 1133