Biome regulates the effects of long-term grazing on soil microbial diversity

被引:0
|
作者
Zhao, Xuan [1 ,2 ]
Cai, Jinting [1 ]
Song, Yueqing [1 ]
Liu, Jushan [1 ]
Wang, Deli [1 ]
Wang, Ling [1 ]
机构
[1] Northeast Normal Univ, Inst Grassland Sci, Key Lab Vegetat Ecol, Jilin Songnen Grassland Ecosyst Natl Observat & Re, Changchun, Peoples R China
[2] Shenyang Meteorol Adm, Shenyang, Liaoning, Peoples R China
来源
JOURNAL OF SUSTAINABLE AGRICULTURE AND ENVIRONMENT | 2023年 / 2卷 / 03期
基金
中国国家自然科学基金;
关键词
biodiversity conservation; biome dependence; grassland types; livestock grazing; microbial diversity; COMMUNITY COMPOSITION; BACTERIAL COMMUNITY; PLANT; RESPONSES; GRASSLANDS; HERBIVORES; STABILITY; EXCLUSION; NITROGEN; IMPACT;
D O I
10.1002/sae2.12056
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
IntroductionLivestock overgrazing represents one of the most destructive uses of land in terrestrial ecosystems and threatens biodiversity. However, understanding the effects of livestock overgrazing on below-ground soil microbial diversity is limited, despite soil microbes representing the majority of biodiversity and determining ecosystem functioning.Materials and MethodsTo investigate the effects of overgrazing on soil microbial richness, a long-term grazing exclusion experiment was conducted at six sites including three meadow steppes and three typical steppes in northern China.ResultsOur results revealed that overgrazing decreased bacterial and fungal richness across temperate steppes in northern China, and the biome could regulate the overgrazing effects, especially for fungal richness. Specifically, the negative effects of overgrazing on microbial richness were highly significant in typical steppes while not significant in meadow steppes that contained higher plant diversity and precipitation. Partial least-squares path model showed that overgrazing affected soil microbial richness in highly complex ways, and the affected pathways were different in meadow steppes and typical steppes. The direct negative effects of grazing and their indirect negative effects via soil properties resulted in a significant decrease in microbial richness in typical steppes. In meadow steppes, the indirect beneficial effects via plant attributes offset the direct negative effects of grazing. Consequently, the soil microbial community in meadow steppe resisted overgrazing disturbance.ConclusionOur study illuminates the complex and highly biome-dependent grazing effects and pathways on soil microbiota and indicates that meadow steppe may be more resistant or resilient to human disturbance than typical steppe. These findings suggest that different grasslands might be managed differently considering their intrinsic characteristics to help biodiversity conservation. Moreover, future research should focus on the underlying mechanisms of grazing effects on soil microbial richness. Besides grazing-induced plant and soil traits changes, other potential pathways could strongly influence soil microbial diversity.
引用
收藏
页码:276 / 284
页数:9
相关论文
共 50 条
  • [21] Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management
    Luo, Gongwen
    Rensing, Christopher
    Chen, Huan
    Liu, Manqiang
    Wang, Min
    Guo, Shiwei
    Ling, Ning
    Shen, Qirong
    FUNCTIONAL ECOLOGY, 2018, 32 (04) : 1103 - 1116
  • [22] Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community
    Wang, Yi
    Li, Chunyue
    Tu, Cong
    Hoyt, Greg D.
    DeForest, Jared L.
    Hu, Shuijin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 609 : 341 - 347
  • [23] Long-term effects of biochar amendment on rhizosphere and bulk soil microbial communities in a karst region, southwest China
    Cheng, Jianzhong
    Lee, Xinqing
    Tang, Yuan
    Zhang, Qinghai
    APPLIED SOIL ECOLOGY, 2019, 140 : 126 - 134
  • [24] Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters
    Brtnicky, Martin
    Dokulilova, Tereza
    Holatko, Jiri
    Pecina, Vaclav
    Kintl, Antonin
    Latal, Oldrich
    Vyhnanek, Tomas
    Prichystalova, Jitka
    Datta, Rahul
    AGRONOMY-BASEL, 2019, 9 (11):
  • [25] Long-term grazing effects on grassland soil properties in southern British Columbia
    Evans, C. R. W.
    Krzic, M.
    Broersma, K.
    Thompson, D. J.
    CANADIAN JOURNAL OF SOIL SCIENCE, 2012, 92 (04) : 685 - 693
  • [26] Long-Term Fertilizer Use Altered Soil Microbial Community Structure but Not α-Diversity in Subtropical Southwestern China
    Zhao, G. R.
    Fan, Z. W.
    An, T. X.
    Kai, L.
    Zhou, F.
    Wu, K. X.
    Wu, B. Z.
    Fullen, M. A.
    EURASIAN SOIL SCIENCE, 2022, 55 (08) : 1116 - 1125
  • [27] Nitrogen addition mediates the effect of soil microbial diversity on microbial carbon use efficiency under long-term tillage practices
    Zhang, Mengni
    Li, Shengping
    Wu, Xueping
    Zheng, Fengjun
    Song, Xiaojun
    Lu, Jinjing
    Liu, Xiaotong
    Wang, Bisheng
    Abdelrhmana, Ahmed Ali
    Degre, Aurore
    LAND DEGRADATION & DEVELOPMENT, 2022, 33 (13) : 2258 - 2275
  • [28] Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya
    Kamaa, Mary
    Mburu, Harrison
    Blanchart, Eric
    Chibole, Livingstone
    Chotte, Jean-Luc
    Kibunja, Catherine
    Lesueur, Didier
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (03) : 315 - 321
  • [29] Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya
    Mary Kamaa
    Harrison Mburu
    Eric Blanchart
    Livingstone Chibole
    Jean-Luc Chotte
    Catherine Kibunja
    Didier Lesueur
    Biology and Fertility of Soils, 2011, 47 : 315 - 321
  • [30] Effects of Grazing Intensity on Microbial Diversity at Different Soil Depths in Desert Steppe Soils
    Wang, Yuxin
    Ju, Xin
    Wu, Qian
    Han, Guodong
    AGRONOMY-BASEL, 2025, 15 (01):