An ensemble approach for enhanced Day-Ahead price forecasting in electricity markets

被引:0
|
作者
Kitsatoglou, Alkiviadis [1 ]
Georgopoulos, Giannis [1 ]
Papadopoulos, Panagiotis [1 ]
Antonopoulos, Herodotus [2 ]
机构
[1] Motor Oil Hellas SA, Irodou Attikou 12A, Maroussi 15124, Greece
[2] Motor Oil Renewable Energy SA, Parnonos 3, Maroussi 15124, Greece
关键词
Data aggregation; Machine learning; Forecasting; Energy market; Electricity prices;
D O I
10.1016/j.eswa.2024.124971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity price forecasting (EPF) is a crucial aspect of daily trading operations, enabling market participants to make informed decisions regarding their bidding strategies. This paper explores a day-ahead price forecasting system that harnesses the potential of multiple machine learning (ML) models and their synergistic integration. This approach is designed to capitalize on the strengths of these models while also accounting for the unique characteristics of energy markets. For this purpose, several aggregation models were developed combining the predictions from ML models based on historical evaluations of their performance. The main objective of this approach is to enhance prediction accuracy by shifting the focus away from rigid model selection and instead prioritizing a data-centric approach, by focusing on data quality rather than rigid model selection. . As a case study, the German energy market was examined due to its pivotal role within the EU system. The experimental results from this study provide valuable insights into the proposed system's effectiveness and functionality.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Probabilistic Approach to Committing Solar Energy in Day-ahead Electricity Markets
    Bashir, Noman
    Irwin, David
    Shenoy, Prashant
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 29
  • [22] Day-Ahead Electricity Price Forecasting Strategy Based on Machine Learning and Optimization Algorithm
    Sun, Caixin
    Pan, Xiaofeng
    Li, Gang
    Li, Pengfei
    Gao, Guoqing
    Tian, Ye
    Xu, Gesheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 254 - 259
  • [23] Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network
    Hong, Ying-Yi
    Wu, Ching-Ping
    ENERGIES, 2012, 5 (11) : 4711 - 4725
  • [24] Dense Skip Attention Based Deep Learning for Day-Ahead Electricity Price Forecasting
    Li, Yuanzheng
    Ding, Yizhou
    Liu, Yun
    Yang, Tao
    Wang, Ping
    Wang, Jingfei
    Yao, Wei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (05) : 4308 - 4327
  • [25] On the importance of the long-term seasonal component in day-ahead electricity price forecasting
    Nowotarski, Jakub
    Weron, Rafal
    ENERGY ECONOMICS, 2016, 57 : 228 - 235
  • [26] Electricity Price Forecasting for Norwegian Day-Ahead Market using Hybrid AI Models
    Vamathevan, Gajanthini
    Dynge, Marthe Fogstad
    Cali, Umit
    2022 18TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2022,
  • [27] Simplicity in dynamic and competitive electricity markets: A case study on enhanced linear models versus complex deep-learning models for day-ahead electricity price forecasting
    Mao, Xuehui
    Chen, Shanlin
    Yu, Hanxin
    Duan, Liwu
    He, Yingjie
    Chu, Yinghao
    APPLIED ENERGY, 2025, 383
  • [28] Metascheduling of HPC Jobs in Day-Ahead Electricity Markets
    Murali, Prakash
    Vadhiyar, Sathish
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2018, 29 (03) : 614 - 627
  • [29] Forecasting day-ahead electricity prices with spatial dependence
    Yang, Yifan
    Guo, Ju'e
    Li, Yi
    Zhou, Jiandong
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (03) : 1255 - 1270
  • [30] Day-Ahead Electricity Market Forecasting using Kernels
    Kekatos, Vassilis
    Veeramachaneni, Sriharsha
    Light, Marc
    Giannakis, Georgios B.
    2013 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES (ISGT), 2013,