Real-time semantic segmentation with dual interaction fusion network

被引:0
|
作者
Qu, Shenming [1 ]
Duan, Jiale [1 ]
Lu, Yongyong [1 ]
Cui, Can [1 ]
Xie, Yuan [1 ]
机构
[1] Henan Univ, Software Coll, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
real-time semantic segmentation; deep learning; feature fusion; dilated convolution;
D O I
10.1117/1.JEI.33.2.023055
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time semantic segmentation is critical in industries, such as autonomous driving and robotics, requiring both accuracy and speed. However, existing real-time segmentation algorithms often sacrifice low-level details to improve inference speed, leading to decreased segmentation accuracy. Therefore, we propose a new real-time semantic segmentation model dual interaction fusion network (DIFNet) to alleviate this problem. First, we propose a lightweight dual decoding fusion structure, which increases the focus on the low-level feature information and can extract richer edge details, while the structure reduces the computational overhead by decreasing the number of channels of the feature map during fusion. In addition, we construct a cross attention module to cross-weight fusion of high-level and low-level features through attention mechanism, which increases the interaction between features and effectively extracts features at different levels. Finally, we design a comprehensive perception module that introduces dilated convolution to expand the model's receptive field, enabling it to better capture global features. Our network was validated on the Cityscapes and CamVid datasets. Specifically, on a single Nvidia GTX 2080 Ti, DIFNet achieves 77.6% mIoU at 83.9 frames per second (FPS) for 1536x768 inputs on Cityscapes test set and 77.0% mIoU at 135.8 FPS for 960x720 inputs on CamVid. (c) 2024 SPIE and IS&T
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A hybrid attention multi-scale fusion network for real-time semantic segmentation
    Ye, Baofeng
    Xue, Renzheng
    Wu, Qianlong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] CFFNet: Cross-scale Feature Fusion Network for Real-Time Semantic Segmentation
    Luo, Qifeng
    Xu, Ting-Bing
    Wei, Zhenzhong
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 338 - 351
  • [23] LBCNet: A lightweight bilateral cascaded feature fusion network for real-time semantic segmentation
    Yuqin Song
    Chunliang Shang
    Jitao Zhao
    The Journal of Supercomputing, 2024, 80 (6) : 7293 - 7315
  • [24] LBCNet: A lightweight bilateral cascaded feature fusion network for real-time semantic segmentation
    Song, Yuqin
    Shang, Chunliang
    Zhao, Jitao
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (06): : 7293 - 7315
  • [25] BOUNDARY CORRECTED MULTI-SCALE FUSION NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION
    Jiang, Tianjiao
    Jin, Yi
    Liang, Tengfei
    Wang, Xu
    Li, Yidong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1886 - 1890
  • [26] DARSegNet: A Real-Time Semantic Segmentation Method Based on Dual Attention Fusion Module and Encoder-Decoder Network
    Xing, Yongfeng
    Zhong, Luo
    Zhong, Xian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [27] SPSSNet: a real-time network for image semantic segmentation
    Mamoon, Saqib
    Manzoor, Muhammad Arslan
    Zhang, Fa-en
    Ali, Zakir
    Lu, Jian-feng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (12) : 1770 - 1782
  • [28] Lightweight Bilateral Network for Real-Time Semantic Segmentation
    Wang, Pengtao
    Li, Lihong
    Pan, Feiyang
    Wang, Lin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (04) : 673 - 682
  • [29] SPSSNet: a real-time network for image semantic segmentation
    Saqib Mamoon
    Muhammad Arslan Manzoor
    Fa-en Zhang
    Zakir Ali
    Jian-feng Lu
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1770 - 1782
  • [30] Real-time Semantic Segmentation with Context Aggregation Network
    Yang, Michael Ying
    Kumaar, Saumya
    Lyu, Ye
    Nex, Francesco
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 124 - 134