Impacts of Curing-Induced Phase Segregation in Silicon Nanoparticle-Based Electrodes

被引:1
作者
Huey, Zoey [1 ,2 ]
Carroll, G. Michael [1 ]
Coyle, Jaclyn [1 ]
Walker, Patrick [1 ]
Neale, Nathan R. [1 ]
Decaluwe, Steven [2 ]
Jiang, Chunsheng [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci Directorate, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Mech Engn, 1500 Illinois St, Golden, CO 80401 USA
来源
BATTERIES-BASEL | 2024年 / 10卷 / 09期
关键词
lithium-ion battery; scanning spreading resistance microscopy; contact resonance force microscopy; silicon anode; nanoparticles; MECHANICAL-PROPERTIES; INTERPHASE; ANODE; PERFORMANCE;
D O I
10.3390/batteries10090313
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report the investigation of silicon nanoparticle composite anodes for Li-ion batteries, using a combination of two nm-scale atomic force microscopy-based techniques: scanning spreading resistance microscopy for electrical conduction mapping and contact resonance and force volume for elastic modulus mapping, along with scanning electron microscopy-based energy dispersion spectroscopy, nanoindentation, and electrochemical analysis. Thermally curing the composite anode-made of polyethylene oxide-treated Si nanoparticles, carbon black, and polyimide binder-reportedly improves the anode electrochemical performance significantly. This work demonstrates phase segregation resulting from thermal curing, where alternating bands of carbon and silicon active material are observed. This electrode morphology is retained after extensive cycling, where the electrical conduction of the carbon-rich bands remains relatively unchanged, but the mechanical modulus of the bands decreases distinctly. These electrical and mechanical factors may contribute to performance improvement, with carbon bands serving as a mechanical buffer for Si deformation and providing electrical conduction pathways. This work motivates future efforts to engineer similar morphologies for mitigating capacity loss in silicon electrodes.
引用
收藏
页数:16
相关论文
共 53 条
  • [1] Competitive adsorption within electrode slurries and impact on cell fabrication and performance
    Burdette-Trofimov, Mary K.
    Armstrong, Beth L.
    Heroux, Luke
    Doucet, Mathieu
    Rossy, Andres E. Marquez
    Hoelzer, David T.
    Kanbargi, Nihal
    Naskar, Amit K.
    Veith, Gabriel M.
    [J]. JOURNAL OF POWER SOURCES, 2022, 520
  • [2] Force-distance curves by atomic force microscopy
    Cappella, B
    Dietler, G
    [J]. SURFACE SCIENCE REPORTS, 1999, 34 (1-3) : 1 - +
  • [3] EFFECT OF CONTACT DEFORMATIONS ON ADHESION OF PARTICLES
    DERJAGUIN, BV
    MULLER, VM
    TOPOROV, YP
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1975, 53 (02) : 314 - 326
  • [4] ensingerplastics, TECAPOWDER PI-Polyimide Powder from Ensinger
  • [5] Eyben P., Scanning Probe Microscopy, P31, DOI DOI 10.1007/978-0-387-28668-6_3
  • [6] Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications
    Feng, Kun
    Li, Matthew
    Liu, Wenwen
    Kashkooli, Ali Ghorbani
    Xiao, Xingcheng
    Cai, Mei
    Chen, Zhongwei
    [J]. SMALL, 2018, 14 (08)
  • [7] Freund L., 2003, THIN FILM MAT STRESS, DOI [10.1017/CBO9780511754715, DOI 10.1017/CBO9780511754715]
  • [8] Goldstein J.I., 2018, SCANNING ELECT MICRO, V4th, P39, DOI DOI 10.1007/978-1-4939-6676-9_4
  • [9] Mechanical properties of nanoparticles: basics and applications
    Guo, Dan
    Xie, Guoxin
    Luo, Jianbin
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (01)
  • [10] Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries
    Heiskanen, Satu Kristiina
    Kim, Jongjung
    Lucht, Brett L.
    [J]. JOULE, 2019, 3 (10) : 2322 - 2333