Efficient mineralization of sulfamethoxazole by a tandem dual-system electro-Fenton process using a gas diffusion electrode for H2O2 generation and an activated carbon fiber cathode for Fe2+regeneration

被引:2
|
作者
Ren, Songyu [1 ]
Zhang, Yanyu [1 ]
Wang, Aimin [1 ]
Song, Yongjun [1 ]
Zhang, Ni [1 ]
Wen, Zhenjun [1 ]
Liu, Ying [1 ]
Fan, Ruiyan [1 ]
Zhang, Zhongguo [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Environm, Beijing Key Lab Aqueous Typ Pollutants Control & W, Beijing 100044, Peoples R China
[2] Beijing Acad Sci & Technol, Inst Resources & Environm, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Electro-Fenton; Tandem dual-system; SMX mineralization; Fe3+/Fe2+cycle; ADVANCED OXIDATION PROCESSES; MODIFIED GRAPHITE FELT; BORON-DOPED DIAMOND; ACID AQUEOUS-MEDIUM; PHOTOELECTRO-FENTON; WASTE-WATER; ANTIBIOTIC CIPROFLOXACIN; CATALYTIC BEHAVIOR; ANODIC-OXIDATION; BY-PRODUCTS;
D O I
10.1016/j.seppur.2024.129108
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Both H2O2 generation and Fe3+/Fe2+ cycle play significant roles in electro-Fenton (EF) that produces hydroxyl radicals (center dot OH) to degrade refractory organic pollutants. Nevertheless, it is typically difficult to achieve O2 and Fe3+ reduction simultaneously due to their competition of cathode electrons. To address this challenge, herein, a novel tandem dual-system EF process was developed to realize efficient mineralization of sulfamethoxazole (SMX), in which a gas diffusion electrode (GDE) was used mainly for H2O2 accumulation (GDE-EF), while an activated carbon fiber (ACF) cathode was applied primarily for Fe2+ regeneration (ACF-EF). H2O2 accumulation by the GDE cathode was about 22 times higher than that by the ACF cathode. The ACF cathode significantly accelerated the conversion of Fe3+ to Fe2+, i.e., about 17.0 mg/L (30.6 %) of Fe2+ was maintained at 120 min in ACF-EF, much higher than 3.4 mg/L in GDE-EF (6.1 %). Up to 87.6% mineralization was achieved after 360 min of GDE+ACF-EF treatment. Effects of Fe2+ concentration, current density, pH, and SMX concentration on pollutant removal were investigated. Evolutions of inorganic ions and short-chain carboxylic acids were determined. Seven aromatic intermediates were identified by UPLC-QTOF-MS, while their ecotoxicity were also assessed. Finally, a reaction sequence for SMX mineralization was proposed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A triple-cathode electron-Fenton system for efficient Fe2+regeneration and in-situ H2O2 electro-activation
    Wang, Dongliang
    Li, Yuxiao
    Hu, Shaogang
    Hu, Jingping
    Hou, Huijie
    Liu, Bingchuan
    Zheng, Han
    Luo, Xi
    Li, Haixiao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 299
  • [2] A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system
    Zhang, Xingwang
    Fu, Jianliang
    Zhang, Yi
    Lei, Lecheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2008, 64 (01) : 116 - 123
  • [3] Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration
    Isarain-Chavez, Eloy
    Arias, Conchita
    Lluis Cabot, Pere
    Centellas, Francesc
    Maria Rodriguez, Rosa
    Antonio Garrido, Jose
    Brillas, Enric
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 96 (3-4) : 361 - 369
  • [4] Integrated electro-Fenton process enabled by a rotating Fe3O4/gas diffusion cathode for simultaneous generation and activation of H2O2
    Zhang, Yan
    Gao, Mingming
    Wang, Shu-Guang
    Zhou, Weizhi
    Sang, Yuanhua
    Wang, Xin-Hua
    ELECTROCHIMICA ACTA, 2017, 231 : 694 - 704
  • [5] Kapok fiber derived biochar as an efficient electro-catalyst for H2O2 in-situ generation in an electro-Fenton system for sulfamethoxazole degradation
    Wang, Wei
    Li, Wenchao
    Li, Hongyi
    Xu, Chenchen
    Zhao, Gang
    Ren, Yueping
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 50
  • [6] New insights into synergistic mechanism of H2O2 generation and Fe3+/Fe2+cycle by the activated carbon fiber felt cathode in the electro-Fenton process for enrofloxacin degradation
    Liu, Ying
    Ren, Songyu
    Zhang, Yanyu
    Song, Yongjun
    Shao, Chaoran
    Wang, Aimin
    Zhang, Zhongguo
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 71
  • [7] Electrogeneration of H2O2 using a porous hydrophobic acetylene black cathode for electro-Fenton process
    Li, Linchao
    Hu, Huili
    Teng, Xiangguo
    Yu, Yuanchun
    Zhu, Yongming
    Su, Xiaoqiang
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2018, 133 : 34 - 39
  • [8] Activated carbon as effective cathode material in iron-free Electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption
    Zhou, Wei
    Rajic, Ljiljana
    Chen, Long
    Kou, Kaikai
    Ding, Yani
    Meng, Xiaoxiao
    Wang, Yan
    Mulaw, Biruk
    Gao, Jihui
    Qin, Yukun
    Alshawabkeh, Akram N.
    ELECTROCHIMICA ACTA, 2019, 296 : 317 - 326
  • [9] A dual-cathode pulsed current electro-Fenton system: Improvement for H2O2 accumulation and Fe3+ reduction
    Deng, Fengxia
    Li, Sixing
    Cao, Yulin
    Fang, M. A.
    Qu, Jianhua
    Chen, Zhonglin
    Qiu, Shan
    JOURNAL OF POWER SOURCES, 2020, 466 (466)
  • [10] Efficient H2O2 generation and electro-Fenton degradation of pollutants in microchannels of oxidized monolithic-porous-carbon cathode
    Guo, Yunfei
    Wu, Shuai
    Yu, Hongtao
    Chen, Shuo
    Wang, Chunna
    Quan, Xie
    Lu, Na
    WATER SCIENCE AND TECHNOLOGY, 2019, 80 (05) : 970 - 978