Machine Learning in Magnetic Resonance Images of Glioblastoma: A Review

被引:3
作者
Waldo-Benitez, Georgina [1 ]
Padierna, Luis Carlos [1 ]
Ceron, Pablo [2 ]
Sosa, Modesto A. [1 ]
机构
[1] Univ Guanajuato, Div Ciencias Ingn, Leon 37150, Mexico
[2] Univ Quintana Roo, Div Ciencias Ingn & Tecnol, Chetmal 77019, Mexico
关键词
Artificial intelligence; Deep learning; Glioblastoma; Overall survival; Machine learning; Magnetic resonance imaging; RADIOMICS; MRI; PREDICTION; SURVIVAL; SEGMENTATION; FEATURES; SUPPORT; MODEL;
D O I
10.2174/0115734056265212231122102029
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: The purpose of this work was to identify which Glioblastoma (GBM) problems can be handled by Magnetic Resonance Imaging (MRI) and Machine Learning (ML) techniques. Results, limitations, and trends through a review of the scientific literature in the last 5 years were performed. Google Scholar, PubMed, Elsevier databases, and forward and backward citations were used for searching articles applying ML techniques in GBM. The 50 most relevant papers fulfilling the selection criteria were deeply analyzed. The PRISMA statement was followed to structure our report. Methods: A partial taxonomy of the GBM problems tackled with ML methods was formulated with 15 subcategories grouped into four categories: extraction of characteristics from tumoral regions, differentiation, characterization, and problems based on genetics. Results: The dominant techniques in solving these problems are: Radiomics for feature extraction, Least Absolute Shrinkage and Selection Operator for feature selection, Support Vector Machines and Random Forest for classification, and Convolutional Neural Networks for characterization. A noticeable trend is that the application of Deep Learning on GBM problems is growing exponentially. The main limitations of ML methods are their interpretability and generalization. Conclusion: The diagnosis, treatment, and characterization of GBM have advanced with the aid of ML methods and MRI data, and this improvement is expected to continue. ML methods are effective in solving GBM-related problems with different precisions, Overall Survival being the hardest problem to solve with accuracies ranging from 57%-71%, and GBM differentiation the one with the highest accuracy ranging from 80%-97%.
引用
收藏
页数:16
相关论文
共 104 条
[1]   Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer [J].
Ahn, Sang Hee ;
Yeo, Adam Unjin ;
Kim, Kwang Hyeon ;
Kim, Chankyu ;
Goh, Youngmoon ;
Cho, Shinhaeng ;
Lee, Se Byeong ;
Lim, Young Kyung ;
Kim, Haksoo ;
Shin, Dongho ;
Kim, Taeyoon ;
Kim, Tae Hyun ;
Youn, Sang Hee ;
Oh, Eun Sang ;
Jeong, Jong Hwi .
RADIATION ONCOLOGY, 2019, 14 (01) :1-13
[2]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[3]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[4]   The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics [J].
Bakas, Spyridon ;
Sako, Chiharu ;
Akbari, Hamed ;
Bilello, Michel ;
Sotiras, Aristeidis ;
Shukla, Gaurav ;
Rudie, Jeffrey D. ;
Santamaria, Natali Flores ;
Kazerooni, Anahita Fathi ;
Pati, Sarthak ;
Rathore, Saima ;
Mamourian, Elizabeth ;
Ha, Sung Min ;
Parker, William ;
Doshi, Jimit ;
Baid, Ujjwal ;
Bergman, Mark ;
Binder, Zev A. ;
Verma, Ragini ;
Lustig, Robert A. ;
Desai, Arati S. ;
Bagley, Stephen J. ;
Mourelatos, Zissimos ;
Morrissette, Jennifer ;
Watt, Christopher D. ;
Brem, Steven ;
Wolf, Ronald L. ;
Melhem, Elias R. ;
Nasrallah, MacLean P. ;
Mohan, Suyash ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2022, 9 (01)
[5]   Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: A systematic review and meta-analysis [J].
Bedrikovetski, Sergei ;
Dudi-Venkata, Nagendra N. ;
Maicas, Gabriel ;
Kroon, Hidde M. ;
Seow, Warren ;
Carneiro, Gustavo ;
Moore, James W. ;
Sammour, Tarik .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 113
[6]   Imaging Biomarkers of Glioblastoma Treatment Response: A Systematic Review and Meta-Analysis of Recent Machine Learning Studies [J].
Booth, Thomas C. ;
Grzeda, Mariusz ;
Chelliah, Alysha ;
Roman, Andrei ;
Al Busaidi, Ayisha ;
Dragos, Carmen ;
Shuaib, Haris ;
Luis, Aysha ;
Mirchandani, Ayesha ;
Alparslan, Burcu ;
Mansoor, Nina ;
Lavrador, Jose ;
Vergani, Francesco ;
Ashkan, Keyoumars ;
Modat, Marc ;
Ourselin, Sebastien .
FRONTIERS IN ONCOLOGY, 2022, 12
[7]   Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI [J].
Cepeda, Santiago ;
Perez-Nunez, Angel ;
Garcia-Garcia, Sergio ;
Garcia-Perez, Daniel ;
Arrese, Ignacio ;
Jimenez-Roldan, Luis ;
Garcia-Galindo, Manuel ;
Gonzalez, Pedro ;
Velasco-Casares, Maria ;
Zamora, Tomas ;
Sarabia, Rosario .
CANCERS, 2021, 13 (20)
[8]  
Cha Z., 2012, Ensemble Machine Learning: Methods and Applications, P157, DOI [10.1007/978-1-4419-9326-75, DOI 10.1007/978-1-4419-9326-75]
[9]   Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy [J].
Chao, Hann-Hsiang ;
Valdes, Gilmer ;
Luna, Jose M. ;
Heskel, Marina ;
Berman, Abigail T. ;
Solberg, Timothy D. ;
Simone, Charles B. .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2018, 19 (05) :539-546
[10]   Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma [J].
Chen, Chaoyue ;
Zheng, Aiping ;
Ou, Xuejin ;
Wang, Jian ;
Ma, Xuelei .
FRONTIERS IN ONCOLOGY, 2020, 10