Graph-Based Spatial Reasoning for Tracking Landmarks in Dynamic Laparoscopic Environments

被引:0
作者
Zhang, Jie [1 ]
Wang, Yiwei [1 ,2 ]
Zhou, Song [1 ]
Zhao, Huan [1 ]
Wan, Chidan [3 ]
Cai, Xiong [3 ]
Ding, Han [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Med Equipment Sci & Engn, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Hepatobiliary Surg, Wuhan 430022, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 10期
基金
美国国家科学基金会;
关键词
Surgery; Feature extraction; Task analysis; Image reconstruction; Anatomy; Visualization; Laparoscopes; Computer vision for medical robotics; deep learning for visual perception; surgical robotics: laparoscopy;
D O I
10.1109/LRA.2024.3445654
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Accurate anatomical landmark tracking is crucial yet challenging in laparoscopic surgery due to the changing appearance of landmarks during dynamic tool-anatomy interactions and visual domain shifts between cases. Unlike appearance-based detection methods, this work proposes a novel graph-based approach to reconstruct the entire target landmark area by explicitly modeling the evolving spatial relations over time among scenario entities, including observable regions, surgical tools, and landmarks. Considering tool-anatomy interactions, we present the Tool-Anatomy Interaction Graph (TAI-G), a spatio-temporal graph that captures spatial dependencies among entities, attribute interactions within entities, and temporal dependencies of spatial relations. To mitigate domain shifts, geometric segmentation features are designated as node attributes, representing domain-invariant image information in the graph space. Message passing with attention helps propagate information across TAI-G, enhancing robust tracking by reconstructing landmark data. Evaluated on laparoscopic cholecystectomy, our framework demonstrates effective handling of complex tool-anatomy interactions and visual domain gaps to accurately track landmarks, showing promise in enhancing the stability and reliability of intricate surgical tasks.
引用
收藏
页码:8459 / 8466
页数:8
相关论文
共 35 条
[1]   The Development of Laparoscopy-A Historical Overview [J].
Alkatout, Ibrahim ;
Mechler, Ulrich ;
Mettler, Liselotte ;
Pape, Julian ;
Maass, Nicolai ;
Biebl, Matthias ;
Gitas, Georgios ;
Lagana, Antonio Simone ;
Freytag, Damaris .
FRONTIERS IN SURGERY, 2021, 8
[2]  
An N., 2020, Anomalies detection and tracking using siamese neural networks
[3]  
Chakraborty S, 2021, Arxiv, DOI arXiv:2106.10766
[4]   EllipseNet: Anchor-Free Ellipse Detection for Automatic Cardiac Biometrics in Fetal Echocardiography [J].
Chen, Jiancong ;
Zhang, Yingying ;
Wang, Jingyi ;
Zhou, Xiaoxue ;
He, Yihua ;
Zhang, Tong .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 :218-227
[5]   Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition Through the Lens of Robustness [J].
Cheng, Yanqi ;
Liu, Lihao ;
Wang, Shujun ;
Jin, Yueming ;
Schonlieb, Carola-Bibiane ;
Aviles-Rivero, Angelica, I .
TRUSTWORTHY MACHINE LEARNING FOR HEALTHCARE, TML4H 2023, 2023, 13932 :177-189
[6]  
Chung JY, 2014, Arxiv, DOI arXiv:1412.3555
[7]   A Multi-task Network for Anatomy Identification in Endoscopic Pituitary Surgery [J].
Das, Adrito ;
Khan, Danyal Z. ;
Williams, Simon C. ;
Hanrahan, John G. ;
Borg, Anouk ;
Dorward, Neil L. ;
Bano, Sophia ;
Marcus, Hani J. ;
Stoyanov, Danail .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IX, 2023, 14228 :472-482
[8]   Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy [J].
den Boer, R. B. ;
Jaspers, T. J. M. ;
de Jongh, C. ;
Pluim, J. P. W. ;
van der Sommen, F. ;
Boers, T. ;
van Hillegersberg, R. ;
Van Eijnatten, M. A. J. M. ;
Ruurda, J. P. .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2023, 37 (07) :5164-5175
[9]   Ellipse R-CNN: Learning to Infer Elliptical Object From Clustering and Occlusion [J].
Dong, Wenbo ;
Roy, Pravakar ;
Peng, Cheng ;
Isler, Volkan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2193-2206
[10]  
Grigsby J, 2022, Arxiv, DOI [arXiv:2109.12218, DOI 10.48550/ARXIV.2109.12218]