Holey Sheets Enhance the Packing and Osmotic Energy Harvesting of Graphene Oxide Membranes

被引:1
|
作者
Park, Hun [1 ]
Lee, Ki Hyun [2 ,3 ]
Noh, Sung Hyun [2 ]
Eom, Wonsik [2 ]
Huang, Jiaxing [1 ]
Han, Tae Hee [2 ,3 ]
机构
[1] Westlake Univ, Sch Engn, Hangzhou 310024, Zhejiang, Peoples R China
[2] Hanyang Univ, Dept Organ & Nanoengn, Human Tech Convergence Program, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Ind Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
two-dimensional material; holey graphene oxide sheets; membrane; nanochannel; osmotic power generation; POWER-GENERATION; ION-TRANSPORT; CONCENTRATION GRADIENT; SALINITY-GRADIENT;
D O I
10.1021/acsnano.4c04493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered membranes assembled from two-dimensional (2D) building blocks such as graphene oxide (GO) are of significant interest in desalination and osmotic power generation because of their ability to selectively transport ions through interconnected 2D nanochannels between stacked layers. However, architectural defects in the final assembled membranes (e.g., wrinkles, voids, and folded layers), which are hard to avoid due to mechanical compliant issues of the sheets during the membrane assembly, disrupt the ionic channel pathways and degrade the stacking geometry of the sheets. This leads to degraded ionic transport performance and the overall structural integrity. In this study, we demonstrate that introducing in-plane nanopores on GO sheets is an effective way to suppress the formation of such architectural imperfections, leading to a more homogeneous membrane. Stacking of porous GO sheets becomes significantly more compact, as the presence of nanopores makes the sheets mechanically softer and more compliant. The resulting membranes exhibit ideal lamellar microstructures with well-aligned and uniform nanochannel pathways. The well-defined nanochannels afford excellent ionic conductivity with an effective transport pathway, resulting in fast, selective ion transport. When applied as a nanofluidic membrane in an osmotic power generation system, the holey GO membrane exhibits higher osmotic power density (13.15 W m(-2)) and conversion efficiency (46.6%) than the pristine GO membrane under a KCl concentration gradient of 1000-fold.
引用
收藏
页码:18584 / 18591
页数:8
相关论文
共 50 条
  • [1] Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting
    Bang, Ki Ryuk
    Kwon, Choah
    Lee, Ho
    Kim, Sangtae
    Cho, Eun Seon
    ACS NANO, 2023, 17 (11) : 10000 - 10009
  • [2] Topologically Programmed Graphene Oxide Membranes with Bioinspired Superstructures toward Boosting Osmotic Energy Harvesting
    Liu, Sheng-Hua
    Zhang, Da
    Fang, You-Peng
    Liang, Zi-Xuan
    Zhao, Zheng-Kun
    Chen, Xia-Chao
    Yao, Juming
    Jiang, Lei
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [3] Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy
    Lee, Ki Hyun
    Kang, Dong Jun
    Eom, Wonsik
    Lee, Hyeonhoo
    Han, Tae Hee
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [4] Robust Holey Graphene Oxide/Cellulose Nanofiber Composites for Sustainable and Efficient Osmotic Energy Conversion
    Wang, Sha
    Shan, Zhu
    Ahmad, Mehraj
    Li, Zhouyue
    Sun, Zhe
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14265 - 14274
  • [5] Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting
    Wu, Yadong
    Xin, Weiwen
    Kong, Xiang-Yu
    Chen, Jianjun
    Qian, Yongchao
    Sun, Yue
    Zhao, Xiaolu
    Chen, Weipeng
    Jiang, Lei
    Wen, Liping
    MATERIALS HORIZONS, 2020, 7 (10) : 2702 - 2709
  • [6] Realizing Synchronous Energy Harvesting and Ion Separation with Graphene Oxide Membranes
    Sun, Pengzhan
    Zheng, Feng
    Zhu, Miao
    Wang, Kunlin
    Zhong, Minlin
    Wu, Dehai
    Zhu, Hongwei
    SCIENTIFIC REPORTS, 2014, 4
  • [7] Realizing Synchronous Energy Harvesting and Ion Separation with Graphene Oxide Membranes
    Pengzhan Sun
    Feng Zheng
    Miao Zhu
    Kunlin Wang
    Minlin Zhong
    Dehai Wu
    Hongwei Zhu
    Scientific Reports, 4
  • [8] Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting
    Wang, Peifang
    Tao, Weixiang
    Zhou, Tianhong
    Wang, Jie
    Zhao, Chenrui
    Zhou, Gang
    Yamauchi, Yusuke
    ADVANCED MATERIALS, 2024, 36 (35)
  • [9] Reduced Holey Graphene Oxide Membranes for Desalination with Improved Water Permeance
    Chen, Xiaoyi
    Feng, Zhihao
    Gohil, Janavi
    Stafford, Christopher M.
    Dai, Ning
    Huang, Liang
    Lin, Haiqing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 1387 - 1394
  • [10] Robust Cellulose Nanocrystal-Based Self-Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting
    Zhang, Xin
    Li, Minmin
    Zhang, Fusheng
    Li, Qiongya
    Xiao, Jie
    Lin, Qiwen
    Qing, Guangyan
    SMALL, 2023,