Exploring the potential of history matching for land surface model calibration

被引:1
|
作者
Raoult, Nina [1 ,6 ]
Beylat, Simon [2 ,3 ]
Salter, James M. [1 ]
Hourdin, Frederic [4 ]
Bastrikov, Vladislav [5 ]
Ottle, Catherine [2 ]
Peylin, Philippe [2 ]
机构
[1] Univ Exeter, Fac Environm Sci & Econ, Dept Math & Stat, Laver Bldg,North Pk Rd, Exeter EX4 4QE, England
[2] Univ Paris Saclay, CEA CNRS UVSQ, LSCE IPSL, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Parkville, Vic 3010, Australia
[4] Sorbonne Univ, Ecole Polytech, Lab Meteorol Dynam, LMD IPSL,CNRS,ENS, F-75005 Paris, France
[5] Sci Partners, Paris, France
[6] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, England
关键词
DATA ASSIMILATION SYSTEM; MULTIPLE DATA STREAMS; CARBON-CYCLE; SENSITIVITY-ANALYSIS; GALAXY FORMATION; ECOSYSTEM MODEL; SOIL-MOISTURE; UNCERTAINTY; PREDICTION; ALGORITHM;
D O I
10.5194/gmd-17-5779-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With the growing complexity of land surface models used to represent the terrestrial part of wider Earth system models, the need for sophisticated and robust parameter optimisation techniques is paramount. Quantifying parameter uncertainty is essential for both model development and more accurate projections. In this study, we assess the power of history matching by comparing results to the variational data assimilation approach commonly used in land surface models for parameter estimation. Although both approaches have different setups and goals, we can extract posterior parameter distributions from both methods and test the model-data fit of ensembles sampled from these distributions. Using a twin experiment, we test whether we can recover known parameter values. Through variational data assimilation, we closely match the observations. However, the known parameter values are not always contained in the posterior parameter distribution, highlighting the equifinality of the parameter space. In contrast, while more conservative, history matching still gives a reasonably good fit and provides more information about the model structure by allowing for non-Gaussian parameter distributions. Furthermore, the true parameters are contained in the posterior distributions. We then consider history matching's ability to ingest different metrics targeting different physical parts of the model, thus helping to reduce the parameter space further and improve the model-data fit. We find the best results when history matching is used with multiple metrics; not only is the model-data fit improved, but we also gain a deeper understanding of the model and how the different parameters constrain different parts of the seasonal cycle. We conclude by discussing the potential of history matching in future studies.
引用
收藏
页码:5779 / 5801
页数:23
相关论文
共 50 条
  • [41] Conditioning a Hydrologic Model Using Patterns of Remotely Sensed Land Surface Temperature
    Zink, Matthias
    Mai, Juliane
    Cuntz, Matthias
    Samaniego, Luis
    WATER RESOURCES RESEARCH, 2018, 54 (04) : 2976 - 2998
  • [42] Model-reduced gradient-based history matching
    Kaleta, Malgorzata P.
    Hanea, Remus G.
    Heemink, Arnold W.
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2011, 15 (01) : 135 - 153
  • [43] CLUES model calibration: residual analysis to investigate potential sources of model error
    Semadeni-Davies, Annette F.
    Jones-Todd, Charlotte M.
    Srinivasan, M. S.
    Muirhead, Richard W.
    Elliott, Alexander H.
    Shankar, Ude
    Tanner, Chris C.
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2021, 64 (03) : 320 - 343
  • [44] On the potential application of land surface models for drought monitoring in China
    Zhang, Liang
    Zhang, Huqiang
    Zhang, Qiang
    Li, Yaohui
    Zhao, Jianhua
    THEORETICAL AND APPLIED CLIMATOLOGY, 2017, 128 (3-4) : 649 - 665
  • [45] On the potential application of land surface models for drought monitoring in China
    Liang Zhang
    Huqiang Zhang
    Qiang Zhang
    Yaohui Li
    Jianhua Zhao
    Theoretical and Applied Climatology, 2017, 128 : 649 - 665
  • [46] Improved Streamflow Calibration of a Land Surface Model by the Choice of Objective Functions-A Case Study of the Nakdong River Watershed in the Korean Peninsula
    Lee, Jong Seok
    Choi, Hyun Il
    WATER, 2021, 13 (12)
  • [47] Assessment and Reduction of the Physical Parameterization Uncertainty for Noah-MP Land Surface Model
    Gan, Yanjun
    Liang, Xin-Zhong
    Duan, Qingyun
    Chen, Fei
    Li, Jianduo
    Zhang, Yu
    WATER RESOURCES RESEARCH, 2019, 55 (07) : 5518 - 5538
  • [48] Evaluation of the Parameter Sensitivities of a Coupled Land Surface Hydrologic Model at a Critical Zone Observatory
    Shi, Yuning
    Davis, Kenneth J.
    Zhang, Fuqing
    Duffy, Christopher J.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (01) : 279 - 299
  • [49] The Plumbing of Land Surface Models: Benchmarking Model Performance
    Best, M. J.
    Abramowitz, G.
    Johnson, H. R.
    Pitman, A. J.
    Balsamo, G.
    Boone, A.
    Cuntz, M.
    Decharme, B.
    Dirmeyer, P. A.
    Dong, J.
    Ek, M.
    Guo, Z.
    Haverd, V.
    Van den Hurk, B. J. J.
    Nearing, G. S.
    Pak, B.
    Peters-Lidard, C.
    Santanello, J. A., Jr.
    Stevens, L.
    Vuichard, N.
    JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (03) : 1425 - 1442
  • [50] Land Surface Climate in the Regional Arctic System Model
    Hamman, Joseph
    Nijssen, Bart
    Brunke, Michael
    Cassano, John
    Craig, Anthony
    DuVivier, Alice
    Hughes, Mimi
    Lettenmaier, Dennis P.
    Maslowski, Wieslaw
    Osinski, Robert
    Roberts, Andrew
    Zeng, Xubin
    JOURNAL OF CLIMATE, 2016, 29 (18) : 6543 - 6562