Exploring the potential of history matching for land surface model calibration

被引:1
|
作者
Raoult, Nina [1 ,6 ]
Beylat, Simon [2 ,3 ]
Salter, James M. [1 ]
Hourdin, Frederic [4 ]
Bastrikov, Vladislav [5 ]
Ottle, Catherine [2 ]
Peylin, Philippe [2 ]
机构
[1] Univ Exeter, Fac Environm Sci & Econ, Dept Math & Stat, Laver Bldg,North Pk Rd, Exeter EX4 4QE, England
[2] Univ Paris Saclay, CEA CNRS UVSQ, LSCE IPSL, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Parkville, Vic 3010, Australia
[4] Sorbonne Univ, Ecole Polytech, Lab Meteorol Dynam, LMD IPSL,CNRS,ENS, F-75005 Paris, France
[5] Sci Partners, Paris, France
[6] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, England
关键词
DATA ASSIMILATION SYSTEM; MULTIPLE DATA STREAMS; CARBON-CYCLE; SENSITIVITY-ANALYSIS; GALAXY FORMATION; ECOSYSTEM MODEL; SOIL-MOISTURE; UNCERTAINTY; PREDICTION; ALGORITHM;
D O I
10.5194/gmd-17-5779-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With the growing complexity of land surface models used to represent the terrestrial part of wider Earth system models, the need for sophisticated and robust parameter optimisation techniques is paramount. Quantifying parameter uncertainty is essential for both model development and more accurate projections. In this study, we assess the power of history matching by comparing results to the variational data assimilation approach commonly used in land surface models for parameter estimation. Although both approaches have different setups and goals, we can extract posterior parameter distributions from both methods and test the model-data fit of ensembles sampled from these distributions. Using a twin experiment, we test whether we can recover known parameter values. Through variational data assimilation, we closely match the observations. However, the known parameter values are not always contained in the posterior parameter distribution, highlighting the equifinality of the parameter space. In contrast, while more conservative, history matching still gives a reasonably good fit and provides more information about the model structure by allowing for non-Gaussian parameter distributions. Furthermore, the true parameters are contained in the posterior distributions. We then consider history matching's ability to ingest different metrics targeting different physical parts of the model, thus helping to reduce the parameter space further and improve the model-data fit. We find the best results when history matching is used with multiple metrics; not only is the model-data fit improved, but we also gain a deeper understanding of the model and how the different parameters constrain different parts of the seasonal cycle. We conclude by discussing the potential of history matching in future studies.
引用
收藏
页码:5779 / 5801
页数:23
相关论文
共 50 条
  • [31] Can satellite land surface temperature data be used similarly to river discharge measurements for distributed hydrological model calibration?
    Corbari, C.
    Mancini, M.
    Li, J.
    Su, Z.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2015, 60 (02): : 202 - 217
  • [32] Improving Weather Predictability by Including Land Surface Model Parameter Uncertainty
    Orth, Rene
    Dutra, Emanuel
    Pappenberger, Florian
    MONTHLY WEATHER REVIEW, 2016, 144 (04) : 1551 - 1569
  • [33] A Methodology to Generate Integrated Land Cover Data for Land Surface Model by Improving Dempster-Shafer Theory
    Huang, Anqi
    Shen, Runping
    Li, Yeqing
    Han, Huimin
    Di, Wenli
    Hagan, Daniel Fiifi Tawia
    REMOTE SENSING, 2022, 14 (04)
  • [34] A Comparison of Land Surface Phenology in the Northern Hemisphere Derived from Satellite Remote Sensing and the Community Land Model
    Li, Xiaolu
    Melaas, Eli
    Carrillo, Carlos M.
    Ault, Toby
    Richardson, Andrew D.
    Lawrence, Peter
    Friedl, Mark A.
    Seyednasrollah, Bijan
    Lawrence, David M.
    Young, Adam M.
    JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (06) : 859 - 873
  • [35] Geolocation, Calibration and Surface Resolution of CYGNSS GNSS-R Land Observations
    Gleason, Scott
    O'Brien, Andrew
    Russel, Anthony
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    REMOTE SENSING, 2020, 12 (08)
  • [36] Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China
    Hou, Ting
    Zhu, Yonghua
    Lu, Haishen
    Sudicky, Edward
    Yu, Zhongbo
    Ouyang, Fen
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (05) : 1383 - 1401
  • [37] Spatiotemporal Analysis of MODIS Land Surface Temperature With In Situ Meteorological Observation and ERA-Interim Reanalysis: The Option of Model Calibration
    Liu, Wei
    Chen, Shuisen
    Jiang, Hao
    Wang, Chongyang
    Li, Dan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1357 - 1371
  • [38] Uncertainty of land surface model and land use data on WRF model simulations over China
    Yan Yan
    Jianping Tang
    Shuyu Wang
    Xiaorui Niu
    Climate Dynamics, 2021, 57 : 1833 - 1851
  • [39] Uncertainty of land surface model and land use data on WRF model simulations over China
    Yan, Yan
    Tang, Jianping
    Wang, Shuyu
    Niu, Xiaorui
    Wang, Le
    CLIMATE DYNAMICS, 2021, 57 (7-8) : 1833 - 1851
  • [40] Challenging a Global Land Surface Model in a Local Socio-Environmental System
    Dahlin, Kyla M.
    Akanga, Donald
    Lombardozzi, Danica L.
    Reed, David E.
    Shirkey, Gabriela
    Lei, Cheyenne
    Abraha, Michael
    Chen, Jiquan
    LAND, 2020, 9 (10) : 1 - 21