Exploring the potential of history matching for land surface model calibration

被引:1
|
作者
Raoult, Nina [1 ,6 ]
Beylat, Simon [2 ,3 ]
Salter, James M. [1 ]
Hourdin, Frederic [4 ]
Bastrikov, Vladislav [5 ]
Ottle, Catherine [2 ]
Peylin, Philippe [2 ]
机构
[1] Univ Exeter, Fac Environm Sci & Econ, Dept Math & Stat, Laver Bldg,North Pk Rd, Exeter EX4 4QE, England
[2] Univ Paris Saclay, CEA CNRS UVSQ, LSCE IPSL, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Parkville, Vic 3010, Australia
[4] Sorbonne Univ, Ecole Polytech, Lab Meteorol Dynam, LMD IPSL,CNRS,ENS, F-75005 Paris, France
[5] Sci Partners, Paris, France
[6] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, England
关键词
DATA ASSIMILATION SYSTEM; MULTIPLE DATA STREAMS; CARBON-CYCLE; SENSITIVITY-ANALYSIS; GALAXY FORMATION; ECOSYSTEM MODEL; SOIL-MOISTURE; UNCERTAINTY; PREDICTION; ALGORITHM;
D O I
10.5194/gmd-17-5779-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With the growing complexity of land surface models used to represent the terrestrial part of wider Earth system models, the need for sophisticated and robust parameter optimisation techniques is paramount. Quantifying parameter uncertainty is essential for both model development and more accurate projections. In this study, we assess the power of history matching by comparing results to the variational data assimilation approach commonly used in land surface models for parameter estimation. Although both approaches have different setups and goals, we can extract posterior parameter distributions from both methods and test the model-data fit of ensembles sampled from these distributions. Using a twin experiment, we test whether we can recover known parameter values. Through variational data assimilation, we closely match the observations. However, the known parameter values are not always contained in the posterior parameter distribution, highlighting the equifinality of the parameter space. In contrast, while more conservative, history matching still gives a reasonably good fit and provides more information about the model structure by allowing for non-Gaussian parameter distributions. Furthermore, the true parameters are contained in the posterior distributions. We then consider history matching's ability to ingest different metrics targeting different physical parts of the model, thus helping to reduce the parameter space further and improve the model-data fit. We find the best results when history matching is used with multiple metrics; not only is the model-data fit improved, but we also gain a deeper understanding of the model and how the different parameters constrain different parts of the seasonal cycle. We conclude by discussing the potential of history matching in future studies.
引用
收藏
页码:5779 / 5801
页数:23
相关论文
共 50 条
  • [1] Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration
    Zhou, Jianhong
    Yang, Kun
    Dong, Jianzhi
    Zhao, Long
    Feng, Huihui
    Zou, Mijun
    Lu, Hui
    Tang, Ronglin
    Jiang, Yaozhi
    Crow, Wade T.
    REMOTE SENSING OF ENVIRONMENT, 2023, 291
  • [2] Assimilating ESA CCI land surface temperature into the ORCHIDEE land surface model: insights from a multi-site study across Europe
    Olivera-Guerra, Luis-Enrique
    Ottle, Catherine
    Raoult, Nina
    Peylin, Philippe
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2025, 29 (01) : 261 - 290
  • [3] Land Surface Model Calibration Using Satellite Remote Sensing Data
    Khaki, Mehdi
    SENSORS, 2023, 23 (04)
  • [4] Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction
    Santanello, Joseph A., Jr.
    Kumar, Sujay V.
    Peters-Lidard, Christa D.
    Harrison, Ken
    Zhou, Shujia
    JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (05) : 1373 - 1400
  • [5] Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JS']JSBACH
    Makela, Jarmo
    Knauer, Juergen
    Aurela, Mika
    Black, Andrew
    Heimann, Martin
    Kobayashi, Hideki
    Lohila, Annalea
    Mammarella, Ivan
    Margolis, Hank
    Markkanen, Tiina
    Susiluoto, Jouni
    Thum, Tea
    Viskari, Toni
    Zaehle, Soenke
    Aalto, Tuula
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (09) : 4075 - 4098
  • [6] Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model
    Liu, YQ
    Gupta, HV
    Sorooshian, S
    Bastidas, LA
    Shuttleworth, WJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D21) : D211011 - 13
  • [7] Exploring the Application of Flood Scaling Property in Hydrological Model Calibration
    Zheng, Yanchen
    Li, Jianzhu
    Zhang, Ting
    Rong, Youtong
    Feng, Ping
    JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (12) : 3255 - 3274
  • [8] Calibration of Land Surface Model Using Remotely Sensed Evapotranspiration and Soil Moisture Predictions
    Poovakka, A. Kunnath
    Ryu, D.
    Renzullo, L. J.
    Pipunic, R.
    George, B.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 3113 - 3119
  • [9] Land surface Verification Toolkit (LVT) - a generalized framework for land surface model evaluation
    Kumar, S. V.
    Peters-Lidard, C. D.
    Santanello, J.
    Harrison, K.
    Liu, Y.
    Shaw, M.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (03) : 869 - 886
  • [10] Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy Model
    Domingo, Dario
    Royapoor, Mohammad
    Du, Hailiang
    Boranian, Aaron
    Walker, Sara
    Goldstein, Michael
    ENERGIES, 2024, 17 (16)