Disentangled feature fusion network for lightweight image super-resolution

被引:2
|
作者
Liu, Huilin [1 ]
Zhou, Jianyu [1 ]
Su, Shuzhi [1 ]
Yang, Gaoming [1 ]
Zhang, Pengfei [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Comp Sci & Engn, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Disentanglement; Network width; Feature fusion; Lightweight;
D O I
10.1016/j.dsp.2024.104697
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the quality of generated images in image super-resolution (SR) has significantly improved due to the widespread application of convolutional neural networks. Existing super-resolution methods often overlook the importance of network width and instead prioritize designing deeper network structures to improve performance. Deeper networks, however, demand greater computational resources and are more challenging to train, making them less suitable for devices with limited performance. To address this issue, we propose a novel method called the disentangled feature fusion network (DFFN). Specifically, we construct dual feature extraction streams (DFES) using the strategies of feature disentanglement and parameter sharing, which increase the network's width without increasing the number of parameters. To facilitate the interaction of information between the dual feature extraction streams, we design a feature interaction module (FIM) that separately enhances high and low- frequency features. Furthermore, a feature fusion module (FFM) is presented to efficiently fuse different levels of high and low-frequency feature information. The proposed DFFN integrates DFES, FIM, and FFM, which not only widens the network without increasing parameters but also minimizes the loss of crucial feature information. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms other state-of-the-art lightweight super-resolution methods, achieving a superior balance between parameter quantity, reconstruction performance, and model complexity. The code is available at https://github.com/zhoujyaust/DFFN.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Single Image Super-Resolution Based on Global Dense Feature Fusion Convolutional Network
    Xu, Wang
    Chen, Renwen
    Huang, Bin
    Zhang, Xiang
    Liu, Chuan
    SENSORS, 2019, 19 (02)
  • [42] Lightweight image super-resolution based on stepwise feedback mechanism and multi-feature maps fusion
    Yao, Xu
    Chen, Houjin
    Li, Yanfeng
    Sun, Jia
    Wei, Jiayu
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [43] Lightweight image super-resolution based on stepwise feedback mechanism and multi-feature maps fusion
    Xu Yao
    Houjin Chen
    Yanfeng Li
    Jia Sun
    Jiayu Wei
    Multimedia Systems, 2024, 30
  • [44] Dual Attention Fusion Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Chen, Wangyou
    Qu, Shenming
    Luo, Laigan
    Lu, Yongyong
    REMOTE SENSING, 2025, 17 (06)
  • [45] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [46] Multi-level Feature Fusion Mechanism for Single Image Super-Resolution
    Lyn, Jiawen
    2020 THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTICS AND CONTROL ENGINEERING (IRCE 2020), 2020, : 52 - 57
  • [47] Dual residual and large receptive field network for lightweight image super-resolution
    Pan, Lulu
    Li, Guo
    Xu, Ke
    Lv, Yanheng
    Zhang, Wenbo
    Li, Lingxiao
    Lei, Le
    NEUROCOMPUTING, 2024, 600
  • [48] Multi-branch-feature fusion super-resolution network
    Li, Dong
    Yang, Silu
    Wang, Xiaoming
    Qin, Yu
    Zhang, Heng
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [49] Deep Feature Fusion Network for Compressed Video Super-Resolution
    Wang, Yue
    Wu, Xiaohong
    He, Xiaohai
    Ren, Chao
    Zhang, Tingrong
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 4427 - 4441
  • [50] Deep Feature Fusion Network for Compressed Video Super-Resolution
    Yue Wang
    Xiaohong Wu
    Xiaohai He
    Chao Ren
    Tingrong Zhang
    Neural Processing Letters, 2022, 54 : 4427 - 4441