Disentangled feature fusion network for lightweight image super-resolution

被引:2
|
作者
Liu, Huilin [1 ]
Zhou, Jianyu [1 ]
Su, Shuzhi [1 ]
Yang, Gaoming [1 ]
Zhang, Pengfei [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Comp Sci & Engn, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Disentanglement; Network width; Feature fusion; Lightweight;
D O I
10.1016/j.dsp.2024.104697
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the quality of generated images in image super-resolution (SR) has significantly improved due to the widespread application of convolutional neural networks. Existing super-resolution methods often overlook the importance of network width and instead prioritize designing deeper network structures to improve performance. Deeper networks, however, demand greater computational resources and are more challenging to train, making them less suitable for devices with limited performance. To address this issue, we propose a novel method called the disentangled feature fusion network (DFFN). Specifically, we construct dual feature extraction streams (DFES) using the strategies of feature disentanglement and parameter sharing, which increase the network's width without increasing the number of parameters. To facilitate the interaction of information between the dual feature extraction streams, we design a feature interaction module (FIM) that separately enhances high and low- frequency features. Furthermore, a feature fusion module (FFM) is presented to efficiently fuse different levels of high and low-frequency feature information. The proposed DFFN integrates DFES, FIM, and FFM, which not only widens the network without increasing parameters but also minimizes the loss of crucial feature information. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms other state-of-the-art lightweight super-resolution methods, achieving a superior balance between parameter quantity, reconstruction performance, and model complexity. The code is available at https://github.com/zhoujyaust/DFFN.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Enhanced Feature Refinement Network Based on Depthwise Separable Convolution for Lightweight Image Super-Resolution
    Sun, Weizhe
    Ke, Ran
    Liu, Zhen
    Lu, Haoran
    Li, Dong
    Yang, Fei
    Zhang, Lei
    SYMMETRY-BASEL, 2024, 16 (11):
  • [32] Second-order progressive feature fusion network for image super-resolution reconstruction
    Yu L.
    Deng Q.
    Zheng L.
    Wu H.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (02): : 391 - 400
  • [33] Depth Image Super-Resolution Reconstruction Network Based on Dual Feature Fusion Guidance
    Geng Haowen
    Wang Yu
    Xin Yanling
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [34] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211
  • [35] Lightweight image super-resolution with the adaptive weight learning network
    Zhang Y.
    Cheng P.
    Zhang S.
    Wang X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 15 - 22
  • [36] Lightweight group convolutional network for single image super-resolution
    Yang, Aiping
    Yang, Bingwang
    Ji, Zhong
    Pang, Yanwei
    Shao, Ling
    INFORMATION SCIENCES, 2020, 516 : 220 - 233
  • [37] Lightweight blueprint residual network for single image super-resolution
    Hao, Fangwei
    Wu, Jiesheng
    Liang, Weiyun
    Xu, Jing
    Li, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [38] Lightweight Progressive Residual Clique Network for Image Super-Resolution
    Huang, Baojin
    He, Zheng
    Wang, Zhongyuan
    Jiang, Kui
    Wang, Guangcheng
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 767 - 772
  • [39] Lightweight single image super-resolution based on shallow feature modulation
    Cheng, De-Qiang
    Wang, Zi-Qiang
    Zhan, GHao-Xiang
    Kou, Qi-Qi
    Qian, Jian-Sheng
    Jiang, He
    Kongzhi yu Juece/Control and Decision, 2024, 39 (12): : 4045 - 4054
  • [40] Feature Fusion Based on Sparse Block for Image Super-resolution
    Wang, Shengping
    Zhao, Li
    Jiang, Runhua
    Huang, Pengcheng
    Xu, Jiawei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3347 - 3354