Disentangled feature fusion network for lightweight image super-resolution

被引:1
|
作者
Liu, Huilin [1 ]
Zhou, Jianyu [1 ]
Su, Shuzhi [1 ]
Yang, Gaoming [1 ]
Zhang, Pengfei [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Comp Sci & Engn, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Disentanglement; Network width; Feature fusion; Lightweight;
D O I
10.1016/j.dsp.2024.104697
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the quality of generated images in image super-resolution (SR) has significantly improved due to the widespread application of convolutional neural networks. Existing super-resolution methods often overlook the importance of network width and instead prioritize designing deeper network structures to improve performance. Deeper networks, however, demand greater computational resources and are more challenging to train, making them less suitable for devices with limited performance. To address this issue, we propose a novel method called the disentangled feature fusion network (DFFN). Specifically, we construct dual feature extraction streams (DFES) using the strategies of feature disentanglement and parameter sharing, which increase the network's width without increasing the number of parameters. To facilitate the interaction of information between the dual feature extraction streams, we design a feature interaction module (FIM) that separately enhances high and low- frequency features. Furthermore, a feature fusion module (FFM) is presented to efficiently fuse different levels of high and low-frequency feature information. The proposed DFFN integrates DFES, FIM, and FFM, which not only widens the network without increasing parameters but also minimizes the loss of crucial feature information. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms other state-of-the-art lightweight super-resolution methods, achieving a superior balance between parameter quantity, reconstruction performance, and model complexity. The code is available at https://github.com/zhoujyaust/DFFN.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] DFAN: Dual Feature Aggregation Network for Lightweight Image Super-Resolution
    Li, Shang
    Zhang, Guixuan
    Luo, Zhengxiong
    Liu, Jie
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [22] Lightweight feature separation, fusion and optimization networks for accurate image super-resolution
    Tian, Lin
    Gao, Shaoshuai
    Tu, Guofang
    MULTIMEDIA SYSTEMS, 2022, 28 (02) : 611 - 622
  • [23] Lightweight feature separation, fusion and optimization networks for accurate image super-resolution
    Lin Tian
    Shaoshuai Gao
    Guofang Tu
    Multimedia Systems, 2022, 28 : 611 - 622
  • [24] Single infrared image super-resolution based on lightweight multi-path feature fusion network
    Mo, Fei
    Wu, Heng
    Qu, Shuo
    Luo, Shaojuan
    Cheng, Lianglun
    IET IMAGE PROCESSING, 2022, 16 (07) : 1880 - 1896
  • [25] A very lightweight image super-resolution network
    Bai, Haomou
    Liang, Xiao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] FSFN: feature separation and fusion network for single image super-resolution
    Kai Zhu
    Zhenxue Chen
    Q. M. Jonathan Wu
    Nannan Wang
    Jie Zhao
    Gan Zhang
    Multimedia Tools and Applications, 2021, 80 : 31599 - 31618
  • [27] Efficient Attention Fusion Feature Extraction Network for Image Super-Resolution
    Wang, Tuoran
    Cheng, Na
    Ding, Shijia
    Wang, Hongyu
    ACM International Conference Proceeding Series, 2023, : 35 - 44
  • [28] FSFN: feature separation and fusion network for single image super-resolution
    Zhu, Kai
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Wang, Nannan
    Zhao, Jie
    Zhang, Gan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31599 - 31618
  • [29] LIGHTWEIGHT IMAGE SUPER-RESOLUTION RECONSTRUCTION WITH HIERARCHICAL FEATURE-DRIVEN NETWORK
    Li, Wen
    Li, Sumei
    Liu, Anqi
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 573 - 577
  • [30] Lightweight interactive feature inference network for single-image super-resolution
    Wang, Li
    Li, Xing
    Tian, Wei
    Peng, Jianhua
    Chen, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01):